Developmental organization of neural dynamics supporting auditory perception.
Electrocorticography (ECoG)
Event-related high-gamma synchronization
Intracranial electroencephalography (EEG) recording
Language acquisition
Neural pruning
Neurolinguistics
Ontogeny
Pediatric epilepsy surgery
Physiological high-frequency oscillations (HFOs)
Subdural grid electrodes
Journal
NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
17
01
2022
revised:
09
05
2022
accepted:
29
05
2022
pubmed:
3
6
2022
medline:
14
7
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70-110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech-sound perception after birth.
Identifiants
pubmed: 35654375
pii: S1053-8119(22)00461-X
doi: 10.1016/j.neuroimage.2022.119342
pmc: PMC9354710
mid: NIHMS1825576
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
119342Subventions
Organisme : NINDS NIH HHS
ID : R01 NS064033
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS089659
Pays : United States
Informations de copyright
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors have no conflicts of interest to report. We confirm that we have read the Journal's position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.
Références
Neuroimage. 2012 Jan 16;59(2):1639-46
pubmed: 21945696
J Acoust Soc Am. 2006 Dec;120(6):4007-18
pubmed: 17225427
J Neurosci. 2009 Oct 28;29(43):13613-20
pubmed: 19864573
Brain Topogr. 2004 Summer;16(4):233-8
pubmed: 15379219
J Am Acad Child Adolesc Psychiatry. 2009 May;48(5):465-470
pubmed: 19395901
Clin Neurophysiol. 2014 Jul;125(7):1312-23
pubmed: 24412331
Front Hum Neurosci. 2018 Apr 24;12:141
pubmed: 29740294
Neurology. 2020 May 19;94(20):e2139-e2147
pubmed: 32321764
J Neurosci. 2016 Jan 27;36(4):1416-28
pubmed: 26818527
Neuroimage. 2012 May 1;60(4):2335-45
pubmed: 22387167
J Neurosci. 2016 Nov 30;36(48):12095-12105
pubmed: 27903720
Hum Brain Mapp. 2012 Jul;33(7):1689-99
pubmed: 21692146
Dev Sci. 2014 Sep;17(5):766-74
pubmed: 24576182
Am J Audiol. 1994 Jul 1;3(2):39-51
pubmed: 26661606
J Cogn Neurosci. 2017 Jun;29(6):1044-1060
pubmed: 28253074
Neuroimage. 2016 Jan 15;125:413-421
pubmed: 26499814
Neuroimage. 2004 Feb;21(2):494-506
pubmed: 14980552
J Comp Neurol. 1997 Oct 20;387(2):167-78
pubmed: 9336221
J Neurosci. 2014 Jan 29;34(5):1592-8
pubmed: 24478343
Brain. 2022 Apr 18;145(2):517-530
pubmed: 35313351
Neuroimage. 2015 Jul 15;115:147-61
pubmed: 25944614
PLoS One. 2013 Aug 19;8(8):e72332
pubmed: 23977281
Neuroimage. 2012 Jan 16;59(2):1657-67
pubmed: 21963912
Neuroimage. 2005 Jul 15;26(4):1019-29
pubmed: 15893476
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13281-6
pubmed: 21788513
Brain Commun. 2021 Mar 14;3(2):fcab042
pubmed: 33959709
Dev Cogn Neurosci. 2016 Apr;18:2-11
pubmed: 26347228
Int J Psychophysiol. 2015 Feb;95(2):191-201
pubmed: 24681353
Brain. 2017 May 1;140(5):1351-1370
pubmed: 28334963
Science. 2010 Sep 10;329(5997):1358-61
pubmed: 20829489
Dev Med Child Neurol. 2000 Feb;42(2):133-42
pubmed: 10698331
Hear Res. 2019 Jan;371:53-65
pubmed: 30500619
Front Psychol. 2013 Aug 30;4:578
pubmed: 24009598
Hear Res. 2006 Feb;212(1-2):185-202
pubmed: 16459037
Brain Lang. 2014 Sep;136:8-18
pubmed: 25108306
Hear Res. 2020 Mar 15;388:107895
pubmed: 31982643
Brain Lang. 2011 Feb;116(2):83-90
pubmed: 21167584
PLoS One. 2017 Jul 24;12(7):e0181354
pubmed: 28738063
Sci Rep. 2021 Mar 4;11(1):5257
pubmed: 33664359
Neuron. 2008 May 8;58(3):429-41
pubmed: 18466752
Brain. 2018 Apr 1;141(4):1130-1144
pubmed: 29506200
Neuroimage. 2006 Dec;33(4):1093-103
pubmed: 17011792
J Acoust Soc Am. 2010 Mar;127(3):1624-35
pubmed: 20329861
Neuroimage. 2014 Jan 15;85 Pt 2:844-52
pubmed: 23867555
Neurosci Biobehav Rev. 2006;30(8):1087-105
pubmed: 16890291
Neuroimage. 2006 Jul 1;31(3):968-80
pubmed: 16530430
Epilepsia. 2003 Mar;44(3):408-18
pubmed: 12614397
Neuroimage. 2020 Sep;218:116946
pubmed: 32442637
Ann Neurol. 1987 Oct;22(4):487-97
pubmed: 3501693
Brain Res. 2010 Apr 23;1327:77-90
pubmed: 20188710
J Neurosci. 2021 Sep 22;41(38):7991-8006
pubmed: 34301825
Clin Neurophysiol. 2000 Dec;111(12):2268-76
pubmed: 11090781
Curr Biol. 2018 Jun 18;28(12):1860-1871.e4
pubmed: 29861132
Hum Brain Mapp. 2019 Mar;40(4):1276-1289
pubmed: 30549127
Brain. 2021 Dec 16;144(11):3340-3354
pubmed: 34849596
Neuroimage. 2017 Jun;153:246-261
pubmed: 28392489
Neuroimage. 2013 Dec;83:224-36
pubmed: 23792979
Neuroimage. 2010 Oct 15;53(1):85-93
pubmed: 20621657
Dev Neuropsychol. 2013;38(6):386-401
pubmed: 23971491
Science. 1999 Dec 17;286(5448):2283-4
pubmed: 10636789
Nat Neurosci. 2006 Apr;9(4):569-77
pubmed: 16547508
Nat Neurosci. 2016 Sep 27;19(10):1299-310
pubmed: 27669991
Clin Neurophysiol. 2018 Jan;129(1):145-154
pubmed: 29190521
Trends Cogn Sci. 2006 May;10(5):204-11
pubmed: 16603406
J Neurosci. 2008 Dec 31;28(53):14467-80
pubmed: 19118181
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2871-5
pubmed: 25730850
Brain. 2009 Apr;132(Pt 4):1038-47
pubmed: 19286694
Hum Brain Mapp. 2014 Aug;35(8):4155-62
pubmed: 24677530
Neuroimage. 2011 Feb 14;54(4):2659-71
pubmed: 21035552
J Cogn Neurosci. 2001 Oct 1;13(7):994-1005
pubmed: 11595101
Hear Res. 2005 Jan;199(1-2):31-9
pubmed: 15574298
J Neurosci. 2008 Nov 5;28(45):11526-36
pubmed: 18987189
Neuron. 2000 Dec;28(3):991-9
pubmed: 11163282
Neuroimage. 2002 Oct;17(2):710-8
pubmed: 12377146
J Neurosurg. 2013 May;118(5):1086-97
pubmed: 23495883
Clin Neurophysiol. 2003 May;114(5):808-17
pubmed: 12738427
Ann N Y Acad Sci. 1977 Sep 30;299:355-69
pubmed: 101116
Neuroimage. 2008 Oct 1;42(4):1275-84
pubmed: 18652902
Neuroimage. 2013 Feb 1;66:318-32
pubmed: 23116815
Clin Neurophysiol. 2013 May;124(5):857-69
pubmed: 23141882
Nat Commun. 2021 May 11;12(1):2643
pubmed: 33976118
Prog Neurobiol. 2020 Jun;189:101788
pubmed: 32198060
Neuroimage. 2006 Apr 1;30(2):563-9
pubmed: 16275021
Biomed Sci Instrum. 1977 Apr 25-27;13:135-45
pubmed: 871500
Cell. 2021 Sep 2;184(18):4626-4639.e13
pubmed: 34411517
Neuron. 2011 Feb 10;69(3):572-83
pubmed: 21315266
Lancet. 2001 Jan 20;357(9251):216-22
pubmed: 11213111