Detection of cell-cell interactions via photocatalytic cell tagging.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
08 2022
Historique:
received: 29 01 2022
accepted: 22 04 2022
pubmed: 3 6 2022
medline: 3 8 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.

Identifiants

pubmed: 35654846
doi: 10.1038/s41589-022-01044-0
pii: 10.1038/s41589-022-01044-0
doi:

Substances chimiques

B7-H1 Antigen 0
Flavins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

850-858

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Belardi, B., Son, S., Felce, J. H., Dustin, M. L. & Fletcher, D. A. Cell–cell interfaces as specialized compartments directing cell function. Nat. Rev. Mol. Cell Biol. 21, 750–764 (2020).
pubmed: 33093672 doi: 10.1038/s41580-020-00298-7
Bechtel, T. J., Reyes-Robles, T., Fadeyi, O. O. & Oslund, R. C. Strategies for monitoring cell–cell interactions. Nat. Chem. Biol. 17, 641–652 (2021).
pubmed: 34035514 doi: 10.1038/s41589-021-00790-x
Yamada, S. & Nelson, W. J. Synapses: sites of cell recognition, adhesion, and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007).
pubmed: 17506641 pmcid: 3368613 doi: 10.1146/annurev.biochem.75.103004.142811
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).
pubmed: 25367977 pmcid: 4692051 doi: 10.1158/2326-6066.CIR-14-0161
Yokosuka, T. & Saito, T. The immunological synapse, TCR microclusters, and T cell activation. Curr. Top. Microbiol. Immunol. 340, 81–107 (2010).
pubmed: 19960310
Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kuhnel, F. & Woller, N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. 75, 689–713 (2018).
pubmed: 29032503 doi: 10.1007/s00018-017-2686-7
Pasqual, G. et al. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).
pubmed: 29342141 pmcid: 5853129 doi: 10.1038/nature25442
Ge, Y. et al. Enzyme-mediated intercellular proximity labeling for detecting cell–cell interactions. J. Am. Chem. Soc. 141, 1833–1837 (2019).
pubmed: 30676735 doi: 10.1021/jacs.8b10286
Liu, Q. et al. A proximity-tagging system to identify membrane protein–protein interactions. Nat. Methods 15, 715–722 (2018).
pubmed: 30104635 doi: 10.1038/s41592-018-0100-5
Martell, J. D. et al. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34, 774–780 (2016).
pubmed: 27240195 pmcid: 4942342 doi: 10.1038/nbt.3563
Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).
pubmed: 27565350 pmcid: 5167540 doi: 10.1016/j.cell.2016.07.041
Liu, Z. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133 (2020).
pubmed: 33096019 pmcid: 7669731 doi: 10.1016/j.cell.2020.09.048
To, T. L. et al. Photoactivatable protein labeling by singlet oxygen mediated reactions. Bioorg. Med. Chem. Lett. 26, 3359–3363 (2016).
pubmed: 27220724 pmcid: 4903891 doi: 10.1016/j.bmcl.2016.05.034
Tamura, T., Takato, M., Shiono, K. & Hamachi, I. Development of a photoactivatable proximity labeling method for the identification of nuclear proteins. Chem. Lett. 49, 145–148 (2020).
doi: 10.1246/cl.190804
Muller, M. et al. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat. Commun. 12, 7036 (2021).
pubmed: 34857745 pmcid: 8639842 doi: 10.1038/s41467-021-27280-x
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).
pubmed: 32139536 pmcid: 7336666 doi: 10.1126/science.aay4106
Gray, H. B. & Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996).
pubmed: 8811189 doi: 10.1146/annurev.bi.65.070196.002541
Williamson, H. R., Dow, B. A. & Davidson, V. L. Mechanisms for control of biological electron transfer reactions. Bioorg. Chem. 57, 213–221 (2014).
pubmed: 25085775 pmcid: 4285783 doi: 10.1016/j.bioorg.2014.06.006
Stubbe, J. & van Der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).
pubmed: 11848913 doi: 10.1021/cr9400875
Pesavento, R. P. & van der Donk, W. A. Tyrosyl radical cofactors. Adv. Protein Chem. 58, 317–385 (2001).
pubmed: 11665491 doi: 10.1016/S0065-3233(01)58008-0
Rees, J. S., Li, X. W., Perrett, S., Lilley, K. S. & Jackson, A. P. Protein neighbors and proximity proteomics. Mol. Cell. Proteom. 14, 2848–2856 (2015).
doi: 10.1074/mcp.R115.052902
Jiang, S. et al. A proteomics approach to the cell-surface interactome using the enzyme-mediated activation of radical sources reaction. Proteomics 12, 54–62 (2012).
pubmed: 22106087 doi: 10.1002/pmic.201100551
Hashimoto, N. et al. Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for molecular clustering. Proteomics 12, 3154–3163 (2012).
pubmed: 22936677 doi: 10.1002/pmic.201200279
Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).
pubmed: 23371551 pmcid: 3916822 doi: 10.1126/science.1230593
Li, X. W. et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem. 289, 14434–14447 (2014).
pubmed: 24706754 pmcid: 4031500 doi: 10.1074/jbc.M113.529578
Bar, D. Z. et al. Biotinylation by antibody recognition—a method for proximity labeling. Nat. Methods 15, 127–133 (2018).
pubmed: 29256494 doi: 10.1038/nmeth.4533
Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).
pubmed: 26866790 pmcid: 4863649 doi: 10.1038/nprot.2016.018
Vasudevan, P. T. & Li, L. O. Kinetics of phenol oxidation by peroxidase. Appl. Biochem. Biotechnol. 60, 203–215 (1996).
doi: 10.1007/BF02783584
Conrad, K. S., Manahan, C. C. & Crane, B. R. Photochemistry of flavoprotein light sensors. Nat. Chem. Biol. 10, 801–809 (2014).
pubmed: 25229449 pmcid: 4258882 doi: 10.1038/nchembio.1633
Sato, S., Morita, K. & Nakamura, H. Regulation of target protein knockdown and labeling using ligand-directed Ru(bpy)3 photocatalyst. Bioconjug. Chem. 26, 250–256 (2015).
pubmed: 25549115 doi: 10.1021/bc500518t
Amini, F., Denison, C., Lin, H. J., Kuo, L. & Kodadek, T. Using oxidative crosslinking and proximity labeling to quantitatively characterize protein–protein and protein–peptide complexes. Chem. Biol. 10, 1115–1127 (2003).
pubmed: 14652079 doi: 10.1016/j.chembiol.2003.11.001
Sato, S. & Nakamura, H. Protein chemical labeling using biomimetic radical chemistry. Molecules 24, 3980 (2019).
pmcid: 6864698 doi: 10.3390/molecules24213980
Dongare, P., MacKenzie, I., Wang, D., Nicewicz, D. A. & Meyer, T. J. Oxidation of alkyl benzenes by a flavin photooxidation catalyst on nanostructured metal-oxide films. Proc. Natl Acad. Sci. USA 114, 9279–9283 (2017).
pubmed: 28802257 pmcid: 5584444 doi: 10.1073/pnas.1707318114
Mirzakulova, E. et al. Electrode-assisted catalytic water oxidation by a flavin derivative. Nat. Chem. 4, 794–801 (2012).
pubmed: 23000992 doi: 10.1038/nchem.1439
Lu, C. et al. Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. Phys. Chem. Chem. Phys. 2, 329–334 (2000).
doi: 10.1039/a908492d
Islam, S. D. M., Penzkofer, A. & Hegemann, P. Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii. Chem. Phys. 291, 97–114 (2003).
doi: 10.1016/S0301-0104(03)00187-3
Chatterjee, S. et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun. 483, 258–263 (2017).
pubmed: 28025143 doi: 10.1016/j.bbrc.2016.12.156
Bhagwat, B. et al. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction. J. Immunol. Methods 456, 7–14 (2018).
pubmed: 29427592 doi: 10.1016/j.jim.2018.02.003
Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide–MHC ligand. Nature 436, 578–582 (2005).
pubmed: 16049493 doi: 10.1038/nature03843
Frutos, S. et al. Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation. Org. Biomol. Chem. 14, 9549–9553 (2016).
pubmed: 27722696 pmcid: 5978688 doi: 10.1039/C6OB01833E
Vila-Perello, M. et al. Streamlined expressed protein ligation using split inteins. J. Am. Chem. Soc. 135, 286–292 (2013).
pubmed: 23265282 doi: 10.1021/ja309126m
Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390 (2018).
pubmed: 29996099 pmcid: 6093302 doi: 10.1016/j.celrep.2018.06.054
Hosseini, B. H. et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc. Natl Acad. Sci. USA 106, 17852–17857 (2009).
pubmed: 19822763 pmcid: 2764924 doi: 10.1073/pnas.0905384106
Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).
pubmed: 28854175 doi: 10.1038/nbt.3973
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532 pmcid: 7238960 doi: 10.1038/s41577-020-0306-5
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
pubmed: 22287627 pmcid: 3378882 doi: 10.1093/nar/gks042
Dessau, R. B. & Pipper, C. B. “R”—project for statistical computing. Ugeskr. Laeg. 170, 328–330 (2008).
pubmed: 18252159
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Warnes, G. R., et al. gplots: Various R Programming Tools for Plotting Data (2020).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).
pubmed: 34620862 pmcid: 8497570 doi: 10.1038/s41467-021-25957-x
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Yu, G., Wang, L., Han, Y. & He, Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Laeremans, T. Camelidae single domain antibodies vhh directed against epidermal growth factor receptor and uses therefor. WO 2005/044858 (2005).
Depla, E., Stortelers, C. & Staelens, S. Monovalent, bivalent and trivalent anti human respiratory syncytial virus (hrsv) nanobody constructs for the prevention and/or treatment of respiratory tract infections. US patent 2012/0128669 (2012).
Bryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48, 463–465 (2010).
pubmed: 20569222 pmcid: 3121328 doi: 10.2144/000113418
White, C., Oslund, R., Fadeyi, O. & Reyes-Robles, T. Detection of Cell–Cell Interactions via Photocatalytic Cell Tagging (Harvard Dataverse, 2022).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Rob C Oslund (RC)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. rob@induprolabs.com.
InduPro, Cambridge, MA, USA. rob@induprolabs.com.

Tamara Reyes-Robles (T)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. tamara.reyes.robles@merck.com.

Cory H White (CH)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Jake H Tomlinson (JH)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Kelly A Crotty (KA)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Edward P Bowman (EP)

Discovery Research, Merck & Co., Inc., San Francisco, CA, USA.

Dan Chang (D)

Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA.

Vanessa M Peterson (VM)

Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA.

Lixia Li (L)

Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA.

Silvia Frutos (S)

SpliceBio, Barcelona, Spain.

Miquel Vila-Perelló (M)

SpliceBio, Barcelona, Spain.

David Vlerick (D)

Ablynx, A Sanofi Company, Zwijnaarde, Belgium.

Karen Cromie (K)

Ablynx, A Sanofi Company, Zwijnaarde, Belgium.

David H Perlman (DH)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Sampat Ingale (S)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Samantha D O' Hara (SDO)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Lee R Roberts (LR)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Grazia Piizzi (G)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Erik C Hett (EC)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.

Daria J Hazuda (DJ)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
Infectious Diseases and Vaccine Research, Merck & Co., Inc., West Point, PA, USA.

Olugbeminiyi O Fadeyi (OO)

Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. niyi@induprolabs.com.
InduPro, Cambridge, MA, USA. niyi@induprolabs.com.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans
Animals Humans Nickel Mice Immunotherapy
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Classifications MeSH