Genetic correlates of phenotypic heterogeneity in autism.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
05
08
2021
accepted:
01
04
2022
pubmed:
3
6
2022
medline:
16
9
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
The substantial phenotypic heterogeneity in autism limits our understanding of its genetic etiology. To address this gap, here we investigated genetic differences between autistic individuals (n
Identifiants
pubmed: 35654973
doi: 10.1038/s41588-022-01072-5
pii: 10.1038/s41588-022-01072-5
pmc: PMC9470531
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1293-1304Subventions
Organisme : Department of Health
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N026063/1
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : U01 MH109514
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214322\Z\18\Z
Pays : United Kingdom
Investigateurs
Antonia San Jose Caceres
(ASJ)
Hannah Hayward
(H)
Daisy Crawley
(D)
Jessica Faulkner
(J)
Jessica Sabet
(J)
Claire Ellis
(C)
Bethany Oakley
(B)
Eva Loth
(E)
Tony Charman
(T)
Declan Murphy
(D)
Rosemary Holt
(R)
Jack Waldman
(J)
Jessica Upadhyay
(J)
Nicola Gunby
(N)
Meng-Chuan Lai
(MC)
Gwilym Renouf
(G)
Amber Ruigrok
(A)
Emily Taylor
(E)
Hisham Ziauddeen
(H)
Julia Deakin
(J)
Sara Ambrosino di Bruttopilo
(SA)
Sarai van Dijk
(S)
Yvonne Rijks
(Y)
Tabitha Koops
(T)
Miriam Douma
(M)
Alyssia Spaan
(A)
Iris Selten
(I)
Maarten Steffers
(M)
Anna Ver Loren van Themaat
(AVL)
Nico Bast
(N)
Sarah Baumeister
(S)
Larry O'Dwyer
(L)
Carsten Bours
(C)
Annika Rausch
(A)
Daniel von Rhein
(D)
Ineke Cornelissen
(I)
Yvette de Bruin
(Y)
Maartje Graauwmans
(M)
Elzbieta Kostrzewa
(E)
Elodie Cauvet
(E)
Kristiina Tammimies
(K)
Rouslan Sitnikow
(R)
Guillaume Dumas
(G)
Yang-Min Kim
(YM)
Thomas Bourgeron
(T)
David M Hougaard
(DM)
Jonas Bybjerg-Grauholm
(J)
Thomas Werge
(T)
Preben Bo Mortensen
(PB)
Ole Mors
(O)
Merete Nordentoft
(M)
Dwaipayan Adhya
(D)
Armandina Alamanza
(A)
Carrie Allison
(C)
Isabelle Garvey
(I)
Tracey Parsons
(T)
Paula Smith
(P)
Alex Tsompanidis
(A)
Graham J Burton
(GJ)
Alexander E P Heazell
(AEP)
Lidia V Gabis
(LV)
Tal Biron-Shental
(T)
Madeline A Lancaster
(MA)
Deepak P Srivastava
(DP)
Jonathan Mill
(J)
Informations de copyright
© 2022. The Author(s).
Références
Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2013).
pubmed: 24074734
doi: 10.1016/S0140-6736(13)61539-1
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).
Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 6, 5 (2020).
pubmed: 31949163
pmcid: 8900942
doi: 10.1038/s41572-019-0138-4
Geschwind, D. H. Advances in autism. Annu. Rev. Med. 60, 367–380 (2009).
pubmed: 19630577
pmcid: 3645857
doi: 10.1146/annurev.med.60.053107.121225
Mandell, D. S., Novak, M. M. & Zubritsky, C. D. Factors associated with age of diagnosis among children with autism spectrum disorders. Pediatrics 116, 1480–1486 (2005).
pubmed: 16322174
doi: 10.1542/peds.2005-0185
Kanne, S. M. et al. The role of adaptive behavior in autism spectrum disorders: implications for functional outcome. J. Autism Dev. Disord. 41, 1007–1018 (2011).
pubmed: 21042872
doi: 10.1007/s10803-010-1126-4
Lai, M.-C. & Szatmari, P. Sex and gender impacts on the behavioural presentation and recognition of autism. Curr. Opin. Psychiatry 33, 117–123 (2020).
pubmed: 31815760
doi: 10.1097/YCO.0000000000000575
Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).
pubmed: 32770077
pmcid: 7415151
doi: 10.1038/s41467-020-17794-1
Frazier, T. W. et al. Demographic and clinical correlates of autism symptom domains and autism spectrum diagnosis. Autism 18, 571–582 (2014).
pubmed: 24104512
doi: 10.1177/1362361313481506
Havdahl, K. A. et al. Multidimensional influences on autism symptom measures: implications for use in etiological research. J. Am. Acad. Child Adolesc. Psychiatry 55, 1054–1063 (2016).
pubmed: 27871640
pmcid: 5131801
doi: 10.1016/j.jaac.2016.09.490
Havdahl, A. et al. Genetic contributions to autism spectrum disorder. Psychol. Med. 51, 2260–2273 (2021).
Warrier, V. et al. Social and non-social autism symptoms and trait domains are genetically dissociable. Commun. Biol. 2, 328 (2019).
pubmed: 31508503
pmcid: 6722082
doi: 10.1038/s42003-019-0558-4
Robinson, E. B., Lichtenstein, P., Anckarsäter, H., Happé, F. & Ronald, A. Examining and interpreting the female protective effect against autistic behavior. Proc. Natl Acad. Sci. USA 110, 5258–5262 (2013).
pubmed: 23431162
pmcid: 3612665
doi: 10.1073/pnas.1211070110
Weiner, D. J. et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet. 49, 978–985 (2017).
pubmed: 28504703
pmcid: 5552240
doi: 10.1038/ng.3863
Robinson, E. B. et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555 (2016).
pubmed: 26998691
pmcid: 4986048
doi: 10.1038/ng.3529
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 (2020).
pubmed: 31981491
pmcid: 7250485
doi: 10.1016/j.cell.2019.12.036
Chaste, P. et al. A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol. Psychiatry 77, 775–784 (2015).
pubmed: 25534755
doi: 10.1016/j.biopsych.2014.09.017
Antaki, D. et al. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat. Genet. https://doi.org/10.1038/s41588-022-01064-5 (2022).
Buja, A. et al. Damaging de novo mutations diminish motor skills in children on the autism spectrum. Proc. Natl Acad. Sci. USA 115, E1859–E1866 (2018).
pubmed: 29434036
pmcid: 5828599
doi: 10.1073/pnas.1715427115
Bishop, S. L. et al. Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. Am. J. Psychiatry 174, 576–585 (2017).
pubmed: 28253736
pmcid: 5578709
doi: 10.1176/appi.ajp.2017.16101115
Happé, F., Ronald, A. & Plomin, R. Time to give up on a single explanation for autism. Nat. Neurosci. 9, 1218–1220 (2006).
pubmed: 17001340
doi: 10.1038/nn1770
Frazier, T. W. et al. Validation of proposed DSM-5 criteria for autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 51, 28–40 (2012).
pubmed: 22176937
doi: 10.1016/j.jaac.2011.09.021
Lai, M.-C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 54, 11–24 (2015).
pubmed: 25524786
pmcid: 4284309
doi: 10.1016/j.jaac.2014.10.003
Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146–153 (2013).
pubmed: 23406909
pmcid: 4164392
doi: 10.1097/WCO.0b013e32835ee548
Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).
pubmed: 28191890
pmcid: 5496244
doi: 10.1038/ng.3789
Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).
pubmed: 33057194
pmcid: 7116826
doi: 10.1038/s41586-020-2832-5
Lam, K. S. L. & Aman, M. G. The Repetitive Behavior Scale—Revised: independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 37, 855–866 (2007).
pubmed: 17048092
doi: 10.1007/s10803-006-0213-z
Rutter, M., Bailey, A. & Lord, C. SCQ: the Social Communication Questionnaire (Western Psychological Services, 2003).
Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).
pubmed: 20955926
doi: 10.1016/j.neuron.2010.10.006
SPARK Consortium et al. SPARK: a US cohort of 50,000 families to accelerate autism research. Neuron 97, 488–493 (2018).
doi: 10.1016/j.neuron.2018.01.015
Pender, R., Fearon, P., Heron, J. & Mandy, W. The longitudinal heterogeneity of autistic traits: a systematic review. Res. Autism Spectr. Disord. 79, 101671 (2020).
doi: 10.1016/j.rasd.2020.101671
Jones, R. M. et al. How interview questions are placed in time influences caregiver description of social communication symptoms on the ADI-R. J. Child Psychol. Psychiatry 56, 577–585 (2015).
pubmed: 25243378
doi: 10.1111/jcpp.12325
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396
pmcid: 6393768
doi: 10.1038/s41588-018-0147-3
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444
doi: 10.1038/s41588-018-0269-7
The Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke, S., Walters, J. T. R. & O’Donovan, M. C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. Preprint at medRxiv https://doi.org/10.1101/2020.09.12.20192922 (2020).
Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).
pubmed: 31427789
doi: 10.1038/s41588-019-0481-0
Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).
pubmed: 21423165
pmcid: 3090611
doi: 10.1038/nature09965
Katayama, Y. et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537, 675–679 (2016).
pubmed: 27602517
doi: 10.1038/nature19357
Hoffmann, T. J. et al. Evidence of reproductive stoppage in families with autism spectrum disorder: a large, population-based cohort study. JAMA Psychiatry 71, 943–951 (2014).
pubmed: 24942798
doi: 10.1001/jamapsychiatry.2014.420
Lai, M.-C. & Baron-Cohen, S. Identifying the lost generation of adults with autism spectrum conditions. Lancet Psychiatry 2, 1013–1027 (2015).
pubmed: 26544750
doi: 10.1016/S2215-0366(15)00277-1
Clarke, T.-K. et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol. Psychiatry 21, 419–425 (2015).
pubmed: 25754080
pmcid: 4759203
doi: 10.1038/mp.2015.12
Myers, S. M. et al. Insufficient evidence for ‘autism-specific’ genes. Am. J. Hum. Genet. 106, 587–595 (2020).
pubmed: 32359473
pmcid: 7212289
doi: 10.1016/j.ajhg.2020.04.004
Thormann, A. et al. Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat. Commun. 10, 2373 (2019).
pubmed: 31147538
pmcid: 6542828
doi: 10.1038/s41467-019-10016-3
Jacquemont, S. et al. A higher mutational burden in females supports a ‘female protective model’ in neurodevelopmental disorders. Am. J. Hum. Genet. 94, 415–425 (2014).
pubmed: 24581740
pmcid: 3951938
doi: 10.1016/j.ajhg.2014.02.001
Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).
pubmed: 26402605
pmcid: 4624267
doi: 10.1016/j.neuron.2015.09.016
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
doi: 10.1038/nature21062
Wigdor, E. M. et al. The female protective effect against autism spectrum disorder. Preprint at medRxiv https://doi.org/10.1101/2021.03.29.21253866 (2021).
Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nat. Genet. 53, 663–671 (2021).
pubmed: 33888908
pmcid: 7611642
doi: 10.1038/s41588-021-00846-7
Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 466–474 (2017).
pubmed: 28545751
doi: 10.1016/j.jaac.2017.03.013
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).
pubmed: 20562875
pmcid: 3232052
doi: 10.1038/ng.608
Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring the contribution of common variants. Proc. Natl Acad. Sci. USA 111, E5272–E5281 (2014).
pubmed: 25422463
pmcid: 4267399
doi: 10.1073/pnas.1419064111
Klei, L. L. et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol. Autism 3, 9 (2012).
pubmed: 23067556
pmcid: 3579743
doi: 10.1186/2040-2392-3-9
Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885 (2014).
pubmed: 25038753
pmcid: 4137411
doi: 10.1038/ng.3039
Gao, Z. et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl Acad. Sci. USA 116, 9491–9500 (2019).
pubmed: 31019089
pmcid: 6511033
doi: 10.1073/pnas.1901259116
Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).
pubmed: 22914163
pmcid: 3548427
doi: 10.1038/nature11396
Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).
pubmed: 30258228
pmcid: 6726472
doi: 10.1038/s41586-018-0566-4
Trost, B. et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86 (2020).
pubmed: 32717741
pmcid: 9348607
doi: 10.1038/s41586-020-2579-z
Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021).
pubmed: 33442040
pmcid: 7810352
doi: 10.1038/s41586-020-03078-7
Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).
pubmed: 23555274
pmcid: 3605113
doi: 10.1371/journal.pgen.1003348
Happé, F. & Frith, U. Annual Research Review: looking back to look forward—changes in the concept of autism and implications for future research. J. Child Psychol. Psychiatry 61, 218–232 (2020).
pubmed: 31994188
doi: 10.1111/jcpp.13176
Geschwind, D. H. et al. The Autism Genetic Resource Exchange: a resource for the study of autism and related neuropsychiatric conditions. Am. J. Hum. Genet. 69, 463–466 (2001).
pubmed: 11452364
pmcid: 1235320
doi: 10.1086/321292
Charman, T. et al. The EU-AIMS Longitudinal European Autism Project (LEAP): clinical characterisation. Mol. Autism 8, 27 (2017).
pubmed: 28649313
pmcid: 5481972
doi: 10.1186/s13229-017-0145-9
Revelle, W. & Revelle, M. W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 2.16 https://cran.r-project.org/package=psych (2021).
Bishop, S. L., Havdahl, K. A., Huerta, M. & Lord, C. Subdimensions of social-communication impairment in autism spectrum disorder. J. Child Psychol. Psychiatry 57, 909–916 (2016).
pubmed: 26748412
pmcid: 4938773
doi: 10.1111/jcpp.12510
Zheng, S. et al. Extracting latent subdimensions of social communication: a cross-measure factor analysis. J. Am. Acad. Child Adolesc. Psychiatry 60, 768–782 (2021).
pubmed: 33027686
doi: 10.1016/j.jaac.2020.08.444
Grove, R., Begeer, S., Scheeren, A. M., Weiland, R. F. & Hoekstra, R. A. Evaluating the latent structure of the non-social domain of autism in autistic adults. Mol. Autism 12, 22 (2021).
pubmed: 33658064
pmcid: 7931608
doi: 10.1186/s13229-020-00401-x
Richler, J., Bishop, S. L., Kleinke, J. R. & Lord, C. Restricted and repetitive behaviors in young children with autism spectrum disorders. J. Autism Dev. Disord. 37, 73–85 (2007).
pubmed: 17195920
doi: 10.1007/s10803-006-0332-6
Heise, D. R. & Bohrnstedt, G. W. Validity, invalidity, and reliability. Sociol. Methodol. 2, 104–129 (1970).
doi: 10.2307/270785
Bentler, P. M. Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika 74, 137–143 (2009).
pubmed: 20161430
pmcid: 2786226
doi: 10.1007/s11336-008-9100-1
Reise, S. P., Moore, T. M. & Haviland, M. G. Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. J. Pers. Assess. 92, 544–559 (2010).
pubmed: 20954056
pmcid: 2981404
doi: 10.1080/00223891.2010.496477
Rosseel, Y. lavaan: an R package for structural equation modeling and more. J. Stat. Softw. 48, 1–36 (2012).
doi: 10.18637/jss.v048.i02
Gibbs, R. A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Conomos, M. P. & Thornton, T. Genetic Estimation and Inference in Structured samples (GENESIS): statistical methods for analyzing genetic data from samples with population structure and/or relatedness. R package v.2 (Bioconductor, 2016).
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Howie, B. N., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).
pubmed: 22820512
pmcid: 3696580
doi: 10.1038/ng.2354
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312
pmcid: 5388176
doi: 10.1038/ng.3643
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
pubmed: 33568819
pmcid: 7875770
doi: 10.1038/s41586-021-03205-y
Warrier, V. et al. Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: a genetically informed approach. Lancet Psychiatry 8, 373–386 (2021).
pubmed: 33740410
pmcid: 8055541
doi: 10.1016/S2215-0366(20)30569-1
Bybjerg-Grauholm, J. et al. The iPSYCH2015 case–cohort sample: updated directions for unravelling genetic and environmental architectures of severe mental disorders. Preprint at medRxiv https://doi.org/10.1101/2020.11.30.20237768 (2020).
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
pubmed: 30992449
pmcid: 6467998
doi: 10.1038/s41467-019-09718-5
Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genet. 17, e1009021 (2021).
pubmed: 33945532
pmcid: 8121285
doi: 10.1371/journal.pgen.1009021
Samocha, K. E., Kosmicki, J. A. & Karczewski, K. J. Regional missense constraint improves variant deleteriousness prediction. Preprint at bioRxiv https://doi.org/10.1101/148353 (2017).
Karczewski, K. J. et al. Author Correction: the mutational constraint spectrum quantified from variation in 141,456 humans. Nature 590, E53 (2021).
pubmed: 33536625
pmcid: 8064911
doi: 10.1038/s41586-020-03174-8
Lord, C. et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J. Autism Dev. Disord. 19, 185–212 (1989).
pubmed: 2745388
doi: 10.1007/BF02211841
Lord, C. et al. Autism Diagnostic Interview—Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).
pubmed: 7814313
doi: 10.1007/BF02172145
Constantino, J. N. & Gruber, C. P. Social Responsiveness Scale: SRS-2 (Western Psychological Services, 2012).
Sparrow, S. S., Balla, D. A., Cicchetti, D. V. & Harrison, P. L. Vineland Adaptive Behavior Scales (American Guidance Service, 1984).
Wilson, B. N., Kaplan, B. J., Crawford, S. G. & Roberts, G. The Developmental Coordination Disorder Questionnaire 2007 (DCDQ’07). Phys. Occup. Ther. Pediatr. 29, 267–272 (2007).
Ripley, B. et al. MASS. R package version 7.3-54 https://cran.r-project.org/package=MASS (2021).
Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. lme4. R package version 1.1-27.1 https://cran.r-project.org/package=lme4 (2021).
Diedenhofen, B. & Musch, J. cocor: a comprehensive solution for the statistical comparison of correlations. PLoS ONE 10, e0121945 (2015).
pubmed: 25835001
pmcid: 4383486
doi: 10.1371/journal.pone.0121945
Peyrot, W. J., Boomsma, D. I., Penninx, B. W. J. H. & Wray, N. R. Disease and polygenic architecture: avoid trio design and appropriately account for unscreened control subjects for common disease. Am. J. Hum. Genet. 98, 382–391 (2016).
pubmed: 26849113
pmcid: 4746372
doi: 10.1016/j.ajhg.2015.12.017
Baron-Cohen, S. The hyper-systemizing, assortative mating theory of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 865–872 (2006).
pubmed: 16519981
doi: 10.1016/j.pnpbp.2006.01.010
Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).
pubmed: 21376301
pmcid: 3059431
doi: 10.1016/j.ajhg.2011.02.002
Maenner, M. J. et al. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. MMWR Surveill. Summ. 69, 1–12 (2020).
pubmed: 32214087
pmcid: 7119644
doi: 10.15585/mmwr.ss6904a1
Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).
pubmed: 31768057
pmcid: 6884695
doi: 10.1038/s41593-019-0527-8