Genetic correlates of phenotypic heterogeneity in autism.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
09 2022
Historique:
received: 05 08 2021
accepted: 01 04 2022
pubmed: 3 6 2022
medline: 16 9 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

The substantial phenotypic heterogeneity in autism limits our understanding of its genetic etiology. To address this gap, here we investigated genetic differences between autistic individuals (n

Identifiants

pubmed: 35654973
doi: 10.1038/s41588-022-01072-5
pii: 10.1038/s41588-022-01072-5
pmc: PMC9470531
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1293-1304

Subventions

Organisme : Department of Health
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N026063/1
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : U01 MH109514
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214322\Z\18\Z
Pays : United Kingdom

Investigateurs

Antonia San Jose Caceres (ASJ)
Hannah Hayward (H)
Daisy Crawley (D)
Jessica Faulkner (J)
Jessica Sabet (J)
Claire Ellis (C)
Bethany Oakley (B)
Eva Loth (E)
Tony Charman (T)
Declan Murphy (D)
Rosemary Holt (R)
Jack Waldman (J)
Jessica Upadhyay (J)
Nicola Gunby (N)
Meng-Chuan Lai (MC)
Gwilym Renouf (G)
Amber Ruigrok (A)
Emily Taylor (E)
Hisham Ziauddeen (H)
Julia Deakin (J)
Sara Ambrosino di Bruttopilo (SA)
Sarai van Dijk (S)
Yvonne Rijks (Y)
Tabitha Koops (T)
Miriam Douma (M)
Alyssia Spaan (A)
Iris Selten (I)
Maarten Steffers (M)
Anna Ver Loren van Themaat (AVL)
Nico Bast (N)
Sarah Baumeister (S)
Larry O'Dwyer (L)
Carsten Bours (C)
Annika Rausch (A)
Daniel von Rhein (D)
Ineke Cornelissen (I)
Yvette de Bruin (Y)
Maartje Graauwmans (M)
Elzbieta Kostrzewa (E)
Elodie Cauvet (E)
Kristiina Tammimies (K)
Rouslan Sitnikow (R)
Guillaume Dumas (G)
Yang-Min Kim (YM)
Thomas Bourgeron (T)
David M Hougaard (DM)
Jonas Bybjerg-Grauholm (J)
Thomas Werge (T)
Preben Bo Mortensen (PB)
Ole Mors (O)
Merete Nordentoft (M)
Dwaipayan Adhya (D)
Armandina Alamanza (A)
Carrie Allison (C)
Isabelle Garvey (I)
Tracey Parsons (T)
Paula Smith (P)
Alex Tsompanidis (A)
Graham J Burton (GJ)
Alexander E P Heazell (AEP)
Lidia V Gabis (LV)
Tal Biron-Shental (T)
Madeline A Lancaster (MA)
Deepak P Srivastava (DP)
Jonathan Mill (J)

Informations de copyright

© 2022. The Author(s).

Références

Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2013).
pubmed: 24074734 doi: 10.1016/S0140-6736(13)61539-1
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).
Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 6, 5 (2020).
pubmed: 31949163 pmcid: 8900942 doi: 10.1038/s41572-019-0138-4
Geschwind, D. H. Advances in autism. Annu. Rev. Med. 60, 367–380 (2009).
pubmed: 19630577 pmcid: 3645857 doi: 10.1146/annurev.med.60.053107.121225
Mandell, D. S., Novak, M. M. & Zubritsky, C. D. Factors associated with age of diagnosis among children with autism spectrum disorders. Pediatrics 116, 1480–1486 (2005).
pubmed: 16322174 doi: 10.1542/peds.2005-0185
Kanne, S. M. et al. The role of adaptive behavior in autism spectrum disorders: implications for functional outcome. J. Autism Dev. Disord. 41, 1007–1018 (2011).
pubmed: 21042872 doi: 10.1007/s10803-010-1126-4
Lai, M.-C. & Szatmari, P. Sex and gender impacts on the behavioural presentation and recognition of autism. Curr. Opin. Psychiatry 33, 117–123 (2020).
pubmed: 31815760 doi: 10.1097/YCO.0000000000000575
Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).
pubmed: 32770077 pmcid: 7415151 doi: 10.1038/s41467-020-17794-1
Frazier, T. W. et al. Demographic and clinical correlates of autism symptom domains and autism spectrum diagnosis. Autism 18, 571–582 (2014).
pubmed: 24104512 doi: 10.1177/1362361313481506
Havdahl, K. A. et al. Multidimensional influences on autism symptom measures: implications for use in etiological research. J. Am. Acad. Child Adolesc. Psychiatry 55, 1054–1063 (2016).
pubmed: 27871640 pmcid: 5131801 doi: 10.1016/j.jaac.2016.09.490
Havdahl, A. et al. Genetic contributions to autism spectrum disorder. Psychol. Med. 51, 2260–2273 (2021).
Warrier, V. et al. Social and non-social autism symptoms and trait domains are genetically dissociable. Commun. Biol. 2, 328 (2019).
pubmed: 31508503 pmcid: 6722082 doi: 10.1038/s42003-019-0558-4
Robinson, E. B., Lichtenstein, P., Anckarsäter, H., Happé, F. & Ronald, A. Examining and interpreting the female protective effect against autistic behavior. Proc. Natl Acad. Sci. USA 110, 5258–5262 (2013).
pubmed: 23431162 pmcid: 3612665 doi: 10.1073/pnas.1211070110
Weiner, D. J. et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet. 49, 978–985 (2017).
pubmed: 28504703 pmcid: 5552240 doi: 10.1038/ng.3863
Robinson, E. B. et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555 (2016).
pubmed: 26998691 pmcid: 4986048 doi: 10.1038/ng.3529
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 (2020).
pubmed: 31981491 pmcid: 7250485 doi: 10.1016/j.cell.2019.12.036
Chaste, P. et al. A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol. Psychiatry 77, 775–784 (2015).
pubmed: 25534755 doi: 10.1016/j.biopsych.2014.09.017
Antaki, D. et al. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat. Genet. https://doi.org/10.1038/s41588-022-01064-5 (2022).
Buja, A. et al. Damaging de novo mutations diminish motor skills in children on the autism spectrum. Proc. Natl Acad. Sci. USA 115, E1859–E1866 (2018).
pubmed: 29434036 pmcid: 5828599 doi: 10.1073/pnas.1715427115
Bishop, S. L. et al. Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. Am. J. Psychiatry 174, 576–585 (2017).
pubmed: 28253736 pmcid: 5578709 doi: 10.1176/appi.ajp.2017.16101115
Happé, F., Ronald, A. & Plomin, R. Time to give up on a single explanation for autism. Nat. Neurosci. 9, 1218–1220 (2006).
pubmed: 17001340 doi: 10.1038/nn1770
Frazier, T. W. et al. Validation of proposed DSM-5 criteria for autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 51, 28–40 (2012).
pubmed: 22176937 doi: 10.1016/j.jaac.2011.09.021
Lai, M.-C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 54, 11–24 (2015).
pubmed: 25524786 pmcid: 4284309 doi: 10.1016/j.jaac.2014.10.003
Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146–153 (2013).
pubmed: 23406909 pmcid: 4164392 doi: 10.1097/WCO.0b013e32835ee548
Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).
pubmed: 28191890 pmcid: 5496244 doi: 10.1038/ng.3789
Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).
pubmed: 33057194 pmcid: 7116826 doi: 10.1038/s41586-020-2832-5
Lam, K. S. L. & Aman, M. G. The Repetitive Behavior Scale—Revised: independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 37, 855–866 (2007).
pubmed: 17048092 doi: 10.1007/s10803-006-0213-z
Rutter, M., Bailey, A. & Lord, C. SCQ: the Social Communication Questionnaire (Western Psychological Services, 2003).
Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).
pubmed: 20955926 doi: 10.1016/j.neuron.2010.10.006
SPARK Consortium et al. SPARK: a US cohort of 50,000 families to accelerate autism research. Neuron 97, 488–493 (2018).
doi: 10.1016/j.neuron.2018.01.015
Pender, R., Fearon, P., Heron, J. & Mandy, W. The longitudinal heterogeneity of autistic traits: a systematic review. Res. Autism Spectr. Disord. 79, 101671 (2020).
doi: 10.1016/j.rasd.2020.101671
Jones, R. M. et al. How interview questions are placed in time influences caregiver description of social communication symptoms on the ADI-R. J. Child Psychol. Psychiatry 56, 577–585 (2015).
pubmed: 25243378 doi: 10.1111/jcpp.12325
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444 doi: 10.1038/s41588-018-0269-7
The Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke, S., Walters, J. T. R. & O’Donovan, M. C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. Preprint at medRxiv https://doi.org/10.1101/2020.09.12.20192922 (2020).
Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).
pubmed: 31427789 doi: 10.1038/s41588-019-0481-0
Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).
pubmed: 21423165 pmcid: 3090611 doi: 10.1038/nature09965
Katayama, Y. et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537, 675–679 (2016).
pubmed: 27602517 doi: 10.1038/nature19357
Hoffmann, T. J. et al. Evidence of reproductive stoppage in families with autism spectrum disorder: a large, population-based cohort study. JAMA Psychiatry 71, 943–951 (2014).
pubmed: 24942798 doi: 10.1001/jamapsychiatry.2014.420
Lai, M.-C. & Baron-Cohen, S. Identifying the lost generation of adults with autism spectrum conditions. Lancet Psychiatry 2, 1013–1027 (2015).
pubmed: 26544750 doi: 10.1016/S2215-0366(15)00277-1
Clarke, T.-K. et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol. Psychiatry 21, 419–425 (2015).
pubmed: 25754080 pmcid: 4759203 doi: 10.1038/mp.2015.12
Myers, S. M. et al. Insufficient evidence for ‘autism-specific’ genes. Am. J. Hum. Genet. 106, 587–595 (2020).
pubmed: 32359473 pmcid: 7212289 doi: 10.1016/j.ajhg.2020.04.004
Thormann, A. et al. Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat. Commun. 10, 2373 (2019).
pubmed: 31147538 pmcid: 6542828 doi: 10.1038/s41467-019-10016-3
Jacquemont, S. et al. A higher mutational burden in females supports a ‘female protective model’ in neurodevelopmental disorders. Am. J. Hum. Genet. 94, 415–425 (2014).
pubmed: 24581740 pmcid: 3951938 doi: 10.1016/j.ajhg.2014.02.001
Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).
pubmed: 26402605 pmcid: 4624267 doi: 10.1016/j.neuron.2015.09.016
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
doi: 10.1038/nature21062
Wigdor, E. M. et al. The female protective effect against autism spectrum disorder. Preprint at medRxiv https://doi.org/10.1101/2021.03.29.21253866 (2021).
Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nat. Genet. 53, 663–671 (2021).
pubmed: 33888908 pmcid: 7611642 doi: 10.1038/s41588-021-00846-7
Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 466–474 (2017).
pubmed: 28545751 doi: 10.1016/j.jaac.2017.03.013
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).
pubmed: 20562875 pmcid: 3232052 doi: 10.1038/ng.608
Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring the contribution of common variants. Proc. Natl Acad. Sci. USA 111, E5272–E5281 (2014).
pubmed: 25422463 pmcid: 4267399 doi: 10.1073/pnas.1419064111
Klei, L. L. et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol. Autism 3, 9 (2012).
pubmed: 23067556 pmcid: 3579743 doi: 10.1186/2040-2392-3-9
Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885 (2014).
pubmed: 25038753 pmcid: 4137411 doi: 10.1038/ng.3039
Gao, Z. et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl Acad. Sci. USA 116, 9491–9500 (2019).
pubmed: 31019089 pmcid: 6511033 doi: 10.1073/pnas.1901259116
Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).
pubmed: 22914163 pmcid: 3548427 doi: 10.1038/nature11396
Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).
pubmed: 30258228 pmcid: 6726472 doi: 10.1038/s41586-018-0566-4
Trost, B. et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86 (2020).
pubmed: 32717741 pmcid: 9348607 doi: 10.1038/s41586-020-2579-z
Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021).
pubmed: 33442040 pmcid: 7810352 doi: 10.1038/s41586-020-03078-7
Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).
pubmed: 23555274 pmcid: 3605113 doi: 10.1371/journal.pgen.1003348
Happé, F. & Frith, U. Annual Research Review: looking back to look forward—changes in the concept of autism and implications for future research. J. Child Psychol. Psychiatry 61, 218–232 (2020).
pubmed: 31994188 doi: 10.1111/jcpp.13176
Geschwind, D. H. et al. The Autism Genetic Resource Exchange: a resource for the study of autism and related neuropsychiatric conditions. Am. J. Hum. Genet. 69, 463–466 (2001).
pubmed: 11452364 pmcid: 1235320 doi: 10.1086/321292
Charman, T. et al. The EU-AIMS Longitudinal European Autism Project (LEAP): clinical characterisation. Mol. Autism 8, 27 (2017).
pubmed: 28649313 pmcid: 5481972 doi: 10.1186/s13229-017-0145-9
Revelle, W. & Revelle, M. W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 2.16 https://cran.r-project.org/package=psych (2021).
Bishop, S. L., Havdahl, K. A., Huerta, M. & Lord, C. Subdimensions of social-communication impairment in autism spectrum disorder. J. Child Psychol. Psychiatry 57, 909–916 (2016).
pubmed: 26748412 pmcid: 4938773 doi: 10.1111/jcpp.12510
Zheng, S. et al. Extracting latent subdimensions of social communication: a cross-measure factor analysis. J. Am. Acad. Child Adolesc. Psychiatry 60, 768–782 (2021).
pubmed: 33027686 doi: 10.1016/j.jaac.2020.08.444
Grove, R., Begeer, S., Scheeren, A. M., Weiland, R. F. & Hoekstra, R. A. Evaluating the latent structure of the non-social domain of autism in autistic adults. Mol. Autism 12, 22 (2021).
pubmed: 33658064 pmcid: 7931608 doi: 10.1186/s13229-020-00401-x
Richler, J., Bishop, S. L., Kleinke, J. R. & Lord, C. Restricted and repetitive behaviors in young children with autism spectrum disorders. J. Autism Dev. Disord. 37, 73–85 (2007).
pubmed: 17195920 doi: 10.1007/s10803-006-0332-6
Heise, D. R. & Bohrnstedt, G. W. Validity, invalidity, and reliability. Sociol. Methodol. 2, 104–129 (1970).
doi: 10.2307/270785
Bentler, P. M. Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika 74, 137–143 (2009).
pubmed: 20161430 pmcid: 2786226 doi: 10.1007/s11336-008-9100-1
Reise, S. P., Moore, T. M. & Haviland, M. G. Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. J. Pers. Assess. 92, 544–559 (2010).
pubmed: 20954056 pmcid: 2981404 doi: 10.1080/00223891.2010.496477
Rosseel, Y. lavaan: an R package for structural equation modeling and more. J. Stat. Softw. 48, 1–36 (2012).
doi: 10.18637/jss.v048.i02
Gibbs, R. A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Conomos, M. P. & Thornton, T. Genetic Estimation and Inference in Structured samples (GENESIS): statistical methods for analyzing genetic data from samples with population structure and/or relatedness. R package v.2 (Bioconductor, 2016).
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Howie, B. N., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).
pubmed: 22820512 pmcid: 3696580 doi: 10.1038/ng.2354
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312 pmcid: 5388176 doi: 10.1038/ng.3643
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
pubmed: 33568819 pmcid: 7875770 doi: 10.1038/s41586-021-03205-y
Warrier, V. et al. Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: a genetically informed approach. Lancet Psychiatry 8, 373–386 (2021).
pubmed: 33740410 pmcid: 8055541 doi: 10.1016/S2215-0366(20)30569-1
Bybjerg-Grauholm, J. et al. The iPSYCH2015 case–cohort sample: updated directions for unravelling genetic and environmental architectures of severe mental disorders. Preprint at medRxiv https://doi.org/10.1101/2020.11.30.20237768 (2020).
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
pubmed: 30992449 pmcid: 6467998 doi: 10.1038/s41467-019-09718-5
Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genet. 17, e1009021 (2021).
pubmed: 33945532 pmcid: 8121285 doi: 10.1371/journal.pgen.1009021
Samocha, K. E., Kosmicki, J. A. & Karczewski, K. J. Regional missense constraint improves variant deleteriousness prediction. Preprint at bioRxiv https://doi.org/10.1101/148353 (2017).
Karczewski, K. J. et al. Author Correction: the mutational constraint spectrum quantified from variation in 141,456 humans. Nature 590, E53 (2021).
pubmed: 33536625 pmcid: 8064911 doi: 10.1038/s41586-020-03174-8
Lord, C. et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J. Autism Dev. Disord. 19, 185–212 (1989).
pubmed: 2745388 doi: 10.1007/BF02211841
Lord, C. et al. Autism Diagnostic Interview—Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).
pubmed: 7814313 doi: 10.1007/BF02172145
Constantino, J. N. & Gruber, C. P. Social Responsiveness Scale: SRS-2 (Western Psychological Services, 2012).
Sparrow, S. S., Balla, D. A., Cicchetti, D. V. & Harrison, P. L. Vineland Adaptive Behavior Scales (American Guidance Service, 1984).
Wilson, B. N., Kaplan, B. J., Crawford, S. G. & Roberts, G. The Developmental Coordination Disorder Questionnaire 2007 (DCDQ’07). Phys. Occup. Ther. Pediatr. 29, 267–272 (2007).
Ripley, B. et al. MASS. R package version 7.3-54 https://cran.r-project.org/package=MASS (2021).
Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. lme4. R package version 1.1-27.1 https://cran.r-project.org/package=lme4 (2021).
Diedenhofen, B. & Musch, J. cocor: a comprehensive solution for the statistical comparison of correlations. PLoS ONE 10, e0121945 (2015).
pubmed: 25835001 pmcid: 4383486 doi: 10.1371/journal.pone.0121945
Peyrot, W. J., Boomsma, D. I., Penninx, B. W. J. H. & Wray, N. R. Disease and polygenic architecture: avoid trio design and appropriately account for unscreened control subjects for common disease. Am. J. Hum. Genet. 98, 382–391 (2016).
pubmed: 26849113 pmcid: 4746372 doi: 10.1016/j.ajhg.2015.12.017
Baron-Cohen, S. The hyper-systemizing, assortative mating theory of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 865–872 (2006).
pubmed: 16519981 doi: 10.1016/j.pnpbp.2006.01.010
Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).
pubmed: 21376301 pmcid: 3059431 doi: 10.1016/j.ajhg.2011.02.002
Maenner, M. J. et al. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. MMWR Surveill. Summ. 69, 1–12 (2020).
pubmed: 32214087 pmcid: 7119644 doi: 10.15585/mmwr.ss6904a1
Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).
pubmed: 31768057 pmcid: 6884695 doi: 10.1038/s41593-019-0527-8

Auteurs

Varun Warrier (V)

Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK. vw260@medschl.cam.ac.uk.

Xinhe Zhang (X)

Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.

Patrick Reed (P)

Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.

Alexandra Havdahl (A)

Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.
Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway.
PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.

Tyler M Moore (TM)

Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
Lifespan Brain Institute of the Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.

Freddy Cliquet (F)

Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, Paris, France.

Claire S Leblond (CS)

Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, Paris, France.

Thomas Rolland (T)

Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, Paris, France.

Anders Rosengren (A)

The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
Institute of Biological Psychiatry, MHC Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark.

David H Rowitch (DH)

Department of Paediatrics, Cambridge University Clinical School, Cambridge, UK.

Matthew E Hurles (ME)

Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

Daniel H Geschwind (DH)

Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Anders D Børglum (AD)

The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, Denmark.
Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark.

Elise B Robinson (EB)

Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Jakob Grove (J)

The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, Denmark.
Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark.
Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.

Hilary C Martin (HC)

Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

Thomas Bourgeron (T)

Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, Paris, France.

Simon Baron-Cohen (S)

Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK. sb205@cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH