Dental macrowear reveals ecological diversity of Gorilla spp.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 06 2022
02 06 2022
Historique:
received:
08
12
2021
accepted:
10
05
2022
entrez:
2
6
2022
pubmed:
3
6
2022
medline:
7
6
2022
Statut:
epublish
Résumé
Size and shape variation of molar crowns in primates plays an important role in understanding how species adapted to their environment. Gorillas are commonly considered to be folivorous primates because they possess sharp cusped molars which are adapted to process fibrous leafy foods. However, the proportion of fruit in their diet can vary significantly depending on their habitats. While tooth morphology can tell us what a tooth is capable of processing, tooth wear can help us to understand how teeth have been used during mastication. The objective of this study is to explore if differences in diet at the subspecies level can be detected by the analysis of molar macrowear. We analysed a large sample of second lower molars of Grauer's, mountain and western lowland gorilla by combining the Occlusal Fingerprint Analysis method with other dental measurements. We found that Grauer's and western lowland gorillas are characterised by a macrowear pattern indicating a larger intake of fruit in their diet, while mountain gorilla's macrowear is associated with the consumption of more folivorous foods. We also found that the consumption of herbaceous foods is generally associated with an increase in dentine and enamel wear, confirming the results of previous studies.
Identifiants
pubmed: 35655071
doi: 10.1038/s41598-022-12488-8
pii: 10.1038/s41598-022-12488-8
pmc: PMC9163330
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9203Informations de copyright
© 2022. The Author(s).
Références
Primates. 2009 Jul;50(3):221-30
pubmed: 19296198
Am J Primatol. 2002 Nov;58(3):91-116
pubmed: 12454955
Am J Phys Anthropol. 2010 Oct;143(2):306-12
pubmed: 20853483
Am J Phys Anthropol. 1974 Mar;40(2):227-56
pubmed: 4815136
Am J Phys Anthropol. 2009 Aug;139(4):600-5
pubmed: 19425091
J Hum Evol. 2020 Aug;145:102816
pubmed: 32580080
Am J Phys Anthropol. 2016 Jan;159(Suppl 61):S79-104
pubmed: 26808100
Oecologia. 1990 Oct;84(3):326-339
pubmed: 28313022
PLoS One. 2011 Mar 18;6(3):e14769
pubmed: 21445243
Am J Phys Anthropol. 2006 Feb;129(2):215-24
pubmed: 16278877
Nat Ecol Evol. 2019 May;3(5):755-764
pubmed: 30962558
PLoS One. 2021 May 10;16(5):e0251309
pubmed: 33970963
Am J Primatol. 2003 Jun;60(2):31-41
pubmed: 12784284
Am J Phys Anthropol. 2016 Mar;159(3):457-65
pubmed: 26597436
Am J Primatol. 1984;7(4):323-356
pubmed: 32106635
Am J Primatol. 2010 Jun;72(6):481-91
pubmed: 20077466
Am J Phys Anthropol. 2020 Sep;173(1):3-20
pubmed: 32274796
Am J Primatol. 1995;36(1):37-60
pubmed: 31924084
Am J Phys Anthropol. 1989 Dec;80(4):447-60
pubmed: 2513725
Z Morphol Anthropol. 1981;72(2):127-69
pubmed: 7314796
J Hum Evol. 2017 Nov;112:15-29
pubmed: 29037413
Am J Phys Anthropol. 2008 Dec;137(4):485-90
pubmed: 18785631
PLoS One. 2014 Apr 14;9(4):e94938
pubmed: 24732967
Science. 2015 Apr 10;348(6231):242-245
pubmed: 25859046
Folia Primatol (Basel). 2017;88(2):223-236
pubmed: 28810237
Am J Phys Anthropol. 2014 Feb;153(2):226-35
pubmed: 24227163
Am J Phys Anthropol. 1984 Jan;63(1):39-56
pubmed: 6422767
Am J Primatol. 1988;15(3):195-211
pubmed: 31968891
Am J Primatol. 2009 Feb;71(2):91-100
pubmed: 19021124
Am J Phys Anthropol. 2012 Apr;147(4):551-79
pubmed: 22331579
Am J Primatol. 2017 Aug;79(8):
pubmed: 28388822
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16579-83
pubmed: 16260727
Am J Primatol. 2013 Mar;75(3):267-80
pubmed: 23208819
Am J Phys Anthropol. 2019 Nov;170(3):433-438
pubmed: 31373681