Optically active polyimides with different thermal histories of their preparation.
chiral selector
circular dichroism
optical activity
polarimetry
polyimide
Journal
Chirality
ISSN: 1520-636X
Titre abrégé: Chirality
Pays: United States
ID NLM: 8914261
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
revised:
11
05
2022
received:
29
12
2021
accepted:
12
05
2022
pubmed:
4
6
2022
medline:
15
7
2022
entrez:
3
6
2022
Statut:
ppublish
Résumé
Optically active linear polyimides and hyperbranched poly (amic acid-imide) were prepared by using procedures varying in particular in the maximum temperature employed in their synthesis. The two types of linear polyimides were based on 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 1,2-diaminocylohexane enantiomers or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 2,2'-diamino-1,1'-binaphthalene enantiomers. The amine-terminated hyperbranched poly (amic acid-imide) was prepared from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 4,4',4″-triaminotriphenylmethane, and its end groups were modified with the chiral selectors N-acetyl-D-phenylalanine or N-acetyl-L-phenylalanine. The final structure of the products was analyzed by IR spectroscopy, and their optical activity was evaluated and confirmed by polarimetry or circular dichroism.
Substances chimiques
Anhydrides
0
Imides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1151-1161Subventions
Organisme : Grant Agency of the Czech Republic
ID : GA20-06264S
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Xie R, Chu L-Y, Deng J-G. Membranes and membrane processes for chiral resolution. Chem Soc Rev. 2008;37(6):1243-1263. doi:10.1039/b713350b
Yoshikawa M, Tharpa K, Dima S-O. Molecularly imprinted membranes: past, present, and future. Chem Rev. 2016;116(19) 11500-11528. doi:10.1021/acs.chemrev.6b00098
Fernandes C, Tiritan ME, Pinto MMM. Chiral separation in preparative scale: A brief overview of membranes as tools for enantiomeric separation. Symmetry. 2017;9(10):206. doi:10.3390/sym9100206
Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S. Advanced polyimide materials: syntheses, properties and applications. Prog Polym Sci. 2012;37(7):907-974. doi:10.1016/j.progpolymsci.2012.02.005
Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev. 2009;109(11):5924-5973. doi:10.1021/cr900068q
Vedovello P, Paranhos CM, Fernandes C, Tiritan ME. Chiral polymeric membranes: recent applications and trends. Sep Purif Technol. 2022;280:119800. doi:10.1016/j.seppur.2021.119800
Kang C, Yan J, Gao L. Synthesis, structure and properties of chiral polyimides. Prog Chem. 2015;27(1):59-69.
Ritter N, Senkovska I, Kaskel S, Weber J. Towards chiral microporous soluble polymers-binaphthalene-based polyimides. Macromol Rapid Commun. 2011;32(5):438-443. doi:10.1002/marc.201000714
Dautel OJ, Wantz G, Flot D, et al. Confined photoactive substrates on a chiral scaffold: the design of an electroluminescent polyimide as material for PLED. J Mater Chem. 2005;15(41):4446-4452. doi:10.1039/b503284a
Wu Z, Han B, Zhang C, et al. Novel soluble and optically active polyimides containing axially asymmetric 9,9′-spirobifluorene units: synthesis, thermal, optical and chiral properties. Polymer. 2012;53(25):5706-5716. doi:10.1016/j.polymer.2012.10.024
Zahmatkesh S, Vakili MR. Synthesis and characterization of new optically active poly (ethyl L-lysinamide)s and poly (ethyl L-lysinimide)s. J Amino Acids. 2010;2010:910906. doi:10.4061/2010/910906
Sukchol K, Thongyai S, Praserthdam P. Preparation and characterization of novel polyimide with chiral side chain for twist nematic liquid crystal display. J Appl Polym Sci. 2011;120(6):3265-3277. doi:10.1002/app.33529
Patel DC, Woods RM, Breitbach ZS, Berthod A, Armstrong DW. Thermal racemization of biaryl atropisomers. Tetrahedron Asymmetry. 2017;28(11):1557-1561. doi:10.1016/j.tetasy.2017.09.006
Yamamoto Y, Sakamoto A, Nishioka T, Oda J, Fukazawa Y. Asymmetric synthesis of 5- and 6-membered lactones from cyclic substrates bearing a C2-chiral auxiliary. J Org Chem. 1991;56(3):1112-1119. doi:10.1021/jo00003a038
Isezaki J, Yoshikawa M, Li N, Robertson GP, Guiver MD. Polysulfones with phenylalanine derivatives as chiral selectors-membranes for chiral separation. J Membr Separ Technol. 2012;1(1):1-8.
Mizushima H, Yoshikawa M, Li N, Robertson GP, Guiver MD. Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. Eur Polym J. 2012;48(10):1717-1725. doi:10.1016/j.eurpolymj.2012.07.003
Husk GR, Cassidy PE, Gebert KL. Synthesis and characterization of a series of polyimides derived from 4,4′-[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]bis[1,3-isobenzofuranedione]. Macromolecules. 1988;21(5):1234-1238. doi:10.1021/ma00183a009
Janegová K, Sysel P, Kulhánková H, Perfilov VA, Bernauer M, Fíla V. Poly (imide-siloxane) films with controlled thickness. J Appl Polym Sci. 2021;138(8):49893. doi:10.1002/app.49893
Langeveld-Voss BMW, Beljone D, Shuai Z, et al. Investigation of exciton coupling in oligothiophenes by circular dichroism spectroscopy. Adv Mater. 1998;10(16):1343-1347. doi:10.1002/(SICI)1521-4095(199811)10:16<1343::AID-ADMA1343>3.0.CO;2-Z
Mi Q, Gao L, Ding M. Optically active aromatic polyimides having axially dissymmetric 1,1′-binaphthalene-2,2′-diyl units. Macromolecules. 1996;29(17):5758-5759. doi:10.1021/ma9606667
Castro-Munoz R, Martin-Gil V, Ahmad MZ, Fíla V. Matrimid®5218 in preparation of membranes for gas separation: current state-of-the-art. Chem Eng Commun. 2018;205(2):161-196. doi:10.1080/00986445.2017.1378647
Kim YJ, Glass TE, Lyle GD, McGrath JE. Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions. Macromolecules. 1993;26(6):1344-1358. doi:10.1021/ma00058a024
Shockravi A, Javadi A, Abouzari-Loft E. Binaphthyl-based macromolecules: a review. RSC Adv. 2013;3(19):6717-6746. doi:10.1039/c3ra22418j
Holakovsky R, Marz M, Cibulka R. Urea derivatives based on 1,1′-binaphthalene skeleton as chiral solvating agents for sulfoxides. Tetrahedron Asymmetry. 2015;26(23):1328-1334. doi:10.1016/j.tetasy.2015.10.011
Zhi J, Guan Y, Cui J, et al. Synthesis and characterization of optically active helical vinyl polymers via free radical polymerization. J Polym Sci: Part A: Polym Chem. 2009;47(23):2408-2421. doi:10.1002/pola.23331
Friess K, Sysel P, Minko E, et al. Comparison of transport properties of hyperbranched and linear polyimides. Desal Water Treat. 2010;14(1-3):165-169. doi:10.5004/dwt.2010.1022
Rybak A, Grzywna ZJ, Sysel P. Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation. Sep Purif Technol. 2013;118:424-431.
Sysel P, Maly D, Vysohlid J, et al. Polyimides crosslinked with amino group-containing compounds. Polym Eng Sci. 2017;57(12):1367-1373. doi:10.1002/pen.24521
Chan LC, Cox BG. Kinetics of amide formation through carbodiimide/N-hydroxybenzotriazole (HOBt) couplings. J Org Chem. 2007;72(23):8863-8869. doi:10.1021/jo701558y