Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta).
Rhodophyta
climate change
coralline algae
kelp forest
ocean acidification
photosynthesis
temperature
Journal
Journal of phycology
ISSN: 1529-8817
Titre abrégé: J Phycol
Pays: United States
ID NLM: 9882935
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
01
12
2021
accepted:
12
05
2022
pubmed:
4
6
2022
medline:
12
8
2022
entrez:
3
6
2022
Statut:
ppublish
Résumé
Global climate changes, such as warming and ocean acidification (OA), are likely to negatively impact calcifying marine taxa. Abundant and ecologically important coralline algae may be particularly susceptible to OA; however, multi-stressor studies and those on articulated morphotypes are lacking. Here, we use field observations and laboratory experiments to elucidate the impacts of warming and acidification on growth, calcification, mineralogy, and photophysiology of the temperate articulated coralline alga, Calliarthron tuberculosum. We conducted a 4-week fully factorial mesocosm experiment exposing individuals from a southern CA kelp forest to current and future temperature and pH/pCO
Identifiants
pubmed: 35657106
doi: 10.1111/jpy.13272
pmc: PMC9543584
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
517-529Informations de copyright
© 2022 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.
Références
Ecol Lett. 2008 Dec;11(12):1304-15
pubmed: 19046359
Glob Chang Biol. 2013 Jan;19(1):103-32
pubmed: 23504724
Biol Lett. 2017 Mar;13(3):
pubmed: 28356409
Environ Microbiol. 2018 Aug;20(8):2769-2782
pubmed: 29575500
Sci Rep. 2016 Feb 08;6:20572
pubmed: 26853562
J Phycol. 2012 Feb;48(1):32-9
pubmed: 27009647
J Phycol. 2020 Feb;56(1):85-96
pubmed: 31553063
Glob Chang Biol. 2018 Oct;24(10):4775-4783
pubmed: 30030870
PLoS One. 2020 Jun 23;15(6):e0235125
pubmed: 32574214
Sci Total Environ. 2018 Jul 1;628-629:375-383
pubmed: 29448022
Ecol Evol. 2013 Apr;3(4):1016-30
pubmed: 23610641
Proc Biol Sci. 2014 Jan 22;281(1778):20133069
pubmed: 24452029
Glob Chang Biol. 2012 Sep;18(9):2804-12
pubmed: 24501058
J Phycol. 2017 Oct;53(5):970-984
pubmed: 28671731
Ecol Evol. 2019 Nov 18;9(23):13402-13412
pubmed: 31871653
Glob Chang Biol. 2022 Jan;28(2):362-374
pubmed: 34689395
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17442-6
pubmed: 18988740
J Exp Biol. 2017 Mar 1;220(Pt 5):759-764
pubmed: 28049626
Biol Bull. 2008 Aug;215(1):98-107
pubmed: 18723641
Ecol Lett. 2010 Nov;13(11):1419-34
pubmed: 20958904
Sci Rep. 2017 May 31;7(1):2526
pubmed: 28566727
Ann Rev Mar Sci. 2009;1:169-92
pubmed: 21141034
J Struct Biol. 2014 Jan;185(1):1-14
pubmed: 24291472
Glob Chang Biol. 2013 Jun;19(6):1884-96
pubmed: 23505245
Science. 2020 Sep 11;369(6509):1351-1354
pubmed: 32913100
J Phycol. 2013 Oct;49(5):830-7
pubmed: 27007309
Mar Environ Res. 2018 Nov;142:100-107
pubmed: 30293660
J Phycol. 2015 Feb;51(1):6-24
pubmed: 26986255