Involvement of executive control in neural capacity related to working memory in aging: an ERP P300 study.


Journal

Cognitive, affective & behavioral neuroscience
ISSN: 1531-135X
Titre abrégé: Cogn Affect Behav Neurosci
Pays: United States
ID NLM: 101083946

Informations de publication

Date de publication:
12 2022
Historique:
accepted: 25 05 2022
pubmed: 11 6 2022
medline: 3 11 2022
entrez: 10 6 2022
Statut: ppublish

Résumé

Executive control could be involved in neural capacity, which corresponds to the modulation of neural activity with increased task difficulty. Thus, by exploring the P300-an electrophysiological correlate of working memory-we examined the role played by executive control in both the age-related decline in working memory and neural capacity in aging. Event-related potentials (ERPs) were recorded while younger and older participants performed a Sternberg task with two set sizes (2 vs. 6 items), allowing us to calculate a neural capacity index. Participants also completed two control tasks (Stroop and 3-back tests), which were used to calculate a composite executive control index. Results indicated that working memory performance decreased with aging and difficulty. At the neural level, results indicated that the P300 amplitude varied with aging and also with task difficulty. In the low difficulty condition, frontal P300 amplitude was higher for older than for younger adults, whereas in the high difficulty condition, the amplitude of frontal and parietal P300 did not differ between both age groups. Results also suggest that task difficulty led to a decrease in parietal amplitude in both age groups and to an increase in frontal amplitude in younger but not older adults. Both executive control and frontal neural capacity mediated the age-related variance in working memory for older adults. Moreover, executive control mediated the age-related variance in the frontal neural capacity of older adults. Thus, the present study suggests a model for older adults in which executive control deficits with advancing age lead to less efficient frontal recruitment to cope with task difficulty (neural capacity), which in turn has a negative impact on working memory functioning.

Identifiants

pubmed: 35680698
doi: 10.3758/s13415-022-01018-8
pii: 10.3758/s13415-022-01018-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1311-1333

Informations de copyright

© 2022. The Psychonomic Society, Inc.

Références

Angel, L., Bastin, C., Genon, S., Salmon, E., Fay, S., Balteau, E., Maquet, P., Luxen, A., Isingrini, M., & Collette, F. (2016). Neural correlates of successful memory retrieval in aging: Do executive functioning and task difficulty matter? Brain Research, 1631, 53–71. https://doi.org/10.1016/j.brainres.2015.10.009
doi: 10.1016/j.brainres.2015.10.009 pubmed: 26541580
Angel, L., Fay, S., Bouazzaoui, B., & Isingrini, M. (2011). Two hemispheres for better memory in old age : Role of executive functioning. Journal of Cognitive Neuroscience, 23(12), 3767–3777. https://doi.org/10.1162/jocn_a_00104
doi: 10.1162/jocn_a_00104 pubmed: 21812559
Babcock, R. L., & Salthouse, T. A. (1990). Effects of increased processing demands on age differences in working memory. Psychology and Aging, 5(3), 421–428. https://doi.org/10.1037//0882-7974.5.3.421
doi: 10.1037//0882-7974.5.3.421 pubmed: 2242246
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201
doi: 10.1038/nrn1201 pubmed: 14523382
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–89). Academic Press.
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509. https://doi.org/10.1016/j.tics.2013.08.012
doi: 10.1016/j.tics.2013.08.012 pubmed: 24018144
Basak, C., & Verhaeghen, P. (2011). Aging and switching the focus of attention in working memory: Age differences in item availability but not in item accessibility. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 66B(5), 519–526. https://doi.org/10.1093/geronb/gbr028
doi: 10.1093/geronb/gbr028 pmcid: 3155026
Bopp, K. L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60(5), P223–P233. https://doi.org/10.1093/geronb/60.5.p223
doi: 10.1093/geronb/60.5.p223 pubmed: 16131616
Bouazzaoui, B., Angel, L., Fay, S., Taconnat, L., Charlotte, F., & Isingrini, M. (2014). Does the greater involvement of executive control in memory with age act as a compensatory mechanism? Canadian Journal of Experimental Psychology = Revue Canadienne De Psychologie Experimentale, 68(1), 59–66. https://doi.org/10.1037/cep0000005
doi: 10.1037/cep0000005 pubmed: 24364809
Bouazzaoui, B., Fay, S., Taconnat, L., Angel, L., Vanneste, S., & Isingrini, M. (2013). Differential involvement of knowledge representation and executive control in episodic memory performance in young and older adults. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 67(2), 100–107. https://doi.org/10.1037/a0028517
doi: 10.1037/a0028517 pubmed: 22774803
Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience & Biobehavioral Reviews, 26(7), 809–817. https://doi.org/10.1016/S0149-7634(02)00067-2
doi: 10.1016/S0149-7634(02)00067-2
Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., Janowsky, J. S., Taylor, S. F., Yesavage, J. A., Mumenthaler, M. S., Jagust, W. J., & Reed, B. R. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130(4), 746–763. https://doi.org/10.1037/0096-3445.130.4.746
doi: 10.1037/0096-3445.130.4.746
Braver, T. S., Satpute, A. B., Rush, B. K., Racine, C. A., & Barch, D. M. (2005). Context processing and context maintenance in healthy aging and early stage dementia of the Alzheimer’s type. Psychology and Aging, 20(1), 33–46. https://doi.org/10.1037/0882-7974.20.1.33
doi: 10.1037/0882-7974.20.1.33 pubmed: 15769212
Braver, T. S., & West, R. (2008). Working memory, executive control, and aging. In The handbook of aging and cognition (3rd ed., pp. 311–372). Psychology Press.
Brébion, G., Smith, M. J., & Ehrlich, M. F. (1997). Working memory and aging: Deficit or strategy differences? Aging, Neuropsychology, and Cognition, 4(1), 58–73. https://doi.org/10.1080/13825589708256636
doi: 10.1080/13825589708256636
Burzynska, A. Z., Nagel, I. E., Preuschhof, C., Li, S.-C., Lindenberger, U., Bäckman, L., & Heekeren, H. R. (2011). Microstructure of Frontoparietal connections predicts cortical responsivity and working memory performance. Cerebral Cortex, 21(10), 2261–2271. https://doi.org/10.1093/cercor/bhq293
doi: 10.1093/cercor/bhq293 pubmed: 21350048
Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews. Neuroscience, 19(11), 701–710. https://doi.org/10.1038/s41583-018-0068-2
doi: 10.1038/s41583-018-0068-2 pubmed: 30305711 pmcid: 6472256
Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402. https://doi.org/10.1006/nimg.2002.1280
doi: 10.1006/nimg.2002.1280 pubmed: 12414279
Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375. https://doi.org/10.1093/cercor/bhg133
doi: 10.1093/cercor/bhg133 pubmed: 15028641
Cabeza, R., Nyberg, L., & Park, D. C. (2005). Cognitive neuroscience of aging: Emergence of a new discipline. In cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 3–15). Oxford University Press.
Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462–473. https://doi.org/10.1016/j.cortex.2009.11.009
doi: 10.1016/j.cortex.2009.11.009 pubmed: 20097332
Carp, J., Gmeindl, L., & Reuter-Lorenz, P. (2010). Age differences in the neural representation of working memory revealed by multi-voxel pattern analysis. Frontiers in Human Neuroscience, 4, 217. https://doi.org/10.3389/fnhum.2010.00217
doi: 10.3389/fnhum.2010.00217 pubmed: 21151373 pmcid: 2996172
Chai, W. J., Abd Hamid, A. I., & Abdullah, J. M. (2018). Working memory from the psychological and neurosciences perspectives: A review. Frontiers in psychology (p. 9) https://www.frontiersin.org/article/10.3389/fpsyg.2018.00401
Chaytor, N., & Schmitter-Edgecombe, M. (2004). Working memory and aging: A cross-sectional and longitudinal analysis using a self-ordered pointing task. Journal of the International Neuropsychological Society, 10(4), 489–503. https://doi.org/10.1017/S1355617704104013
doi: 10.1017/S1355617704104013 pubmed: 15327728
Christensen, H., Mackinnon, A. J., Korten, A. E., Jorm, A. F., Henderson, A. S., & Jacomb, P. (1999). Dispersion in cognitive ability as a function of age: A longitudinal study of an elderly community sample. Aging, Neuropsychology, and Cognition, 6(3), 214–228. https://doi.org/10.1076/anec.6.3.214.779
doi: 10.1076/anec.6.3.214.779
Clarys, D., Bugaiska, A., Tapia, G., Baudouin, A., & and. (2009). Ageing, remembering, and executive function. Memory, 17(2), 158–168. https://doi.org/10.1080/09658210802188301
doi: 10.1080/09658210802188301 pubmed: 18615347
Collette, F., & Salmon, E. (2014). Les modifications du fonctionnement exécutif dans le vieillissement normal. [executive dysfunction in normal aging.]. Psychologie Française, 59(1), 41–58. https://doi.org/10.1016/j.psfr.2013.03.006
doi: 10.1016/j.psfr.2013.03.006
Cowan, N. (1998). Attention and memory: An integrated framework. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195119107.001.0001
Cowan, N. (1999). An embedded-processes model of working memory. In models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.006
doi: 10.1017/CBO9781139174909.006
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87–114, discussion 114-185. https://doi.org/10.1017/s0140525x01003922
doi: 10.1017/s0140525x01003922
Cowan, N., Naveh-Benjamin, M., Kilb, A., & Saults, J. S. (2006). Life-span development of visual working memory: When is feature binding difficult? Developmental Psychology, 42(6), 1089–1102. https://doi.org/10.1037/0012-1649.42.6.1089
doi: 10.1037/0012-1649.42.6.1089 pubmed: 17087544 pmcid: 1635970
Craik, F. I. M., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131–138. https://doi.org/10.1016/j.tics.2006.01.007
doi: 10.1016/j.tics.2006.01.007 pubmed: 16460992
Craik, F. I. M., & Bialystok, E. (2008). Lifespan cognitive development: The roles of representation and control. In the handbook of aging and cognition (3rd ed.pp. 557–601). Psychology Press.
Craik, F. I. M., & Rose, N. S. (2012). Memory encoding and aging: A neurocognitive perspective. Neuroscience and Biobehavioral Reviews, 36(7), 1729–1739. https://doi.org/10.1016/j.neubiorev.2011.11.007
doi: 10.1016/j.neubiorev.2011.11.007 pubmed: 22155274
Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., & Holcomb, P. J. (2010). Mechanisms underlying age- and performance-related differences in working memory. Journal of Cognitive Neuroscience, 23(6), 1298–1314. https://doi.org/10.1162/jocn.2010.21540
doi: 10.1162/jocn.2010.21540 pubmed: 20617886 pmcid: 3076134
Daffner, K. R., Ryan, K. K., Williams, D. M., Budson, A. E., Rentz, D. M., Scinto, L. F. M., & Holcomb, P. J. (2005). Age-related differences in novelty and target processing among cognitively high performing adults. Neurobiology of Aging, 26(9), 1283–1295. https://doi.org/10.1016/j.neurobiolaging.2004.11.007
doi: 10.1016/j.neurobiolaging.2004.11.007 pubmed: 16054727
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex (New York, N.Y.: 1991), 18(5), 1201–1209. https://doi.org/10.1093/cercor/bhm155
doi: 10.1093/cercor/bhm155
Deltour, J. J. (1993). Échelle de vocabulaire de Mill Hill de J. C. Raven. Adaptation française et normes européennes du Mill Hill et du Standard progressive matrices de Raven (PM 38). Editions L’application des techniques modernes.
Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In The handbook of aging and cognition (3rd ed., pp. 1–54). Psychology Press.
Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and Aging, 4(4), 500–503. https://doi.org/10.1037/0882-7974.4.4.500
doi: 10.1037/0882-7974.4.4.500 pubmed: 2619956
Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357–427. https://doi.org/10.1017/S0140525X00058027
doi: 10.1017/S0140525X00058027
Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59.
doi: 10.1093/bmb/65.1.49 pubmed: 12697616
Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In I. A. Miyake (Ed.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.007
doi: 10.1017/CBO9781139174909.007
Fabiani, M., & Friedman, D. (1995). Changes in brain activity patterns in aging: The novelty oddball. Psychophysiology, 32(6), 579–594. https://doi.org/10.1111/j.1469-8986.1995.tb01234.x
doi: 10.1111/j.1469-8986.1995.tb01234.x pubmed: 8524992
Fabiani, M., Friedman, D., & Cheng, J. C. (1998). Individual differences in P3 scalp distribution in older adults, and their relationship to frontal lobe function. Psychophysiology, 35(6), 698–708. https://doi.org/10.1111/1469-8986.3560698
doi: 10.1111/1469-8986.3560698 pubmed: 9844431
Fjell, A. M., & Walhovd, K. B. (2001). P300 and neuropsychological tests as measures of aging: Scalp topography and cognitive changes. Brain Topography, 14(1), 25–40. https://doi.org/10.1023/a:1012563605837
doi: 10.1023/a:1012563605837 pubmed: 11599530
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.
doi: 10.1016/0022-3956(75)90026-6 pubmed: 1202204
Friedman, D. (2003). Cognition and aging: A highly selective overview of event-related potential (ERP) data. Journal of Clinical and Experimental Neuropsychology, 25(5), 702–720. https://doi.org/10.1076/jcen.25.5.702.14578
doi: 10.1076/jcen.25.5.702.14578 pubmed: 12815507
Friedman, D., Kazmerski, V., & Fabiani, M. (1997). An overview of age-related changes in the scalp distribution of P3b. Electroencephalography and Clinical Neurophysiology, 104(6), 498–513. https://doi.org/10.1016/s0168-5597(97)00036-1
doi: 10.1016/s0168-5597(97)00036-1 pubmed: 9402892
Friedman, D., Simpson, G., & Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30(4), 383–396. https://doi.org/10.1111/j.1469-8986.1993.tb02060.x
doi: 10.1111/j.1469-8986.1993.tb02060.x pubmed: 8327624
Gevins, A., Smith, M. E., Le, J., Leong, H., Bennett, J., Martin, N., McEvoy, L., Du, R., & Whitfield, S. (1996). High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalography and Clinical Neurophysiology, 98(4), 327–348. https://doi.org/10.1016/0013-4694(96)00288-x
doi: 10.1016/0013-4694(96)00288-x pubmed: 8641154
Glisky, E. L., & Kong, L. L. (2008). Do young and older adults rely on different processes in source memory tasks? A neuropsychological study. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(4), 809–822. https://doi.org/10.1037/0278-7393.34.4.809
doi: 10.1037/0278-7393.34.4.809 pubmed: 18605870 pmcid: 2504728
Golden, C. J. (1978). Stroop color and word test: A manual for clinical and experimental uses. Stoelting Company.
Gombart, S., Fay, S., & Isingrini, M. (2017). Connaissances et contrôle exécutif: Deux facteurs cognitifs de protection contre le vieillissement de la mémoire épisodique ? Psychologie Française. https://doi.org/10.1016/j.psfr.2017.03.001
Gonçalves, V. T., & Mansur, L. L. (2009). N-Back auditory test performance in normal individuals. Dementia & Neuropsychologia, 3(2), 114–117. https://doi.org/10.1590/S1980-57642009DN30200008
doi: 10.1590/S1980-57642009DN30200008
Grady, C., Maisog, J., Horwitz, B., Ungerleider, L., Mentis, M., Salerno, J., Pietrini, P., Wagner, E., & Haxby, J. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. The Journal of Neuroscience, 14(3), 1450–1462. https://doi.org/10.1523/JNEUROSCI.14-03-01450.1994
doi: 10.1523/JNEUROSCI.14-03-01450.1994 pubmed: 8126548 pmcid: 6577560
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. https://doi.org/10.1016/0013-4694(83)90135-9
doi: 10.1016/0013-4694(83)90135-9 pubmed: 6187540
Guerreiro, M. J. S., Murphy, D. R., & Van Gerven, P. W. M. (2013). Making sense of age-related distractibility: The critical role of sensory modality. Acta Psychologica, 142(2), 184–194. https://doi.org/10.1016/j.actpsy.2012.11.007
doi: 10.1016/j.actpsy.2012.11.007 pubmed: 23337081
Guerreiro, M. J. S., & Van Gerven, P. W. M. (2011). Now you see it, now you don’t : Evidence for age-dependent and age-independent cross-modal distraction. Psychology and Aging, 26(2), 415–426. https://doi.org/10.1037/a0021507
doi: 10.1037/a0021507 pubmed: 21443358
Guerrero, L., Isingrini, M., Angel, L., Fay, S., Taconnat, L., & Bouazzaoui, B. (2021). Effect of self-reported internal memory strategy use on age-related episodic and working memory decline: Contribution of control processes. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 75(4), 348–361. https://doi.org/10.1037/cep0000240
doi: 10.1037/cep0000240 pubmed: 34291987
Guerrero Sastoque, L. F., Bouazzaoui, B., Angel, L., Fay, S., Gombart, S., & Isingrini, M. (2020). Differential protective role of control and representation against age-related memory decline. Canadian Journal of Experimental Psychology = Revue Canadienne De Psychologie Experimentale, 74(1), 44–55. https://doi.org/10.1037/cep0000191
doi: 10.1037/cep0000191 pubmed: 31599618
Habib, R., Nyberg, L., & Nilsson, L.-G. (2007). Cognitive and non-cognitive factors contributing to the longitudinal identification of successful older adults in the betula study. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 14(3), 257–273. https://doi.org/10.1080/13825580600582412
doi: 10.1080/13825580600582412 pubmed: 17453560
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 22, pp. 193–225). Academic Press. https://doi.org/10.1016/S0079-7421(08)60041-9
doi: 10.1016/S0079-7421(08)60041-9
Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653–675). The MIT Press.
Heinzel, S., Lorenz, R. C., Brockhaus, W.-R., Wüstenberg, T., Kathmann, N., Heinz, A., & Rapp, M. A. (2014). Working memory load-dependent brain response predicts behavioral training gains in older adults. Journal of Neuroscience, 34(4), 1224–1233. https://doi.org/10.1523/JNEUROSCI.2463-13.2014
doi: 10.1523/JNEUROSCI.2463-13.2014 pubmed: 24453314
Holtzer, R., Rakitin, B. C., Steffener, J., Flynn, J., Kumar, A., & Stern, Y. (2009). Age effects on load-dependent brain activations in working memory for novel material. Brain Research, 1249, 148–161. https://doi.org/10.1016/j.brainres.2008.10.009
doi: 10.1016/j.brainres.2008.10.009 pubmed: 18983833
Isingrini, M. (2001). Fonctions exécutives, mémoire et métamémoire dans le vieillissement normal. In T. Meulemans, F. Collette, & M. Van der Linden (Eds.), Neuropsychologie des fonctions exécutives (pp. 79–108). Solal.
Isingrini, M., Angel, L., Fay, S., Taconnat, L., Lemaire, P., & Bouazzaoui, B. (2015). Age-related differences in the reliance on executive control in working memory: Role of task demand. PLoS One, 10(12), e0145361. https://doi.org/10.1371/journal.pone.0145361
doi: 10.1371/journal.pone.0145361 pubmed: 26700019 pmcid: 4689563
Jasper, H. (1958). The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology. General, 132(1), 47–70. https://doi.org/10.1037/0096-3445.132.1.47
doi: 10.1037/0096-3445.132.1.47 pubmed: 12656297
Kim, C., Kroger, J. K., Calhoun, V. D., & Clark, V. P. (2015). The role of the Frontopolar cortex in manipulation of integrated information in working memory. Neuroscience Letters, 595, 25–29. https://doi.org/10.1016/j.neulet.2015.03.044
doi: 10.1016/j.neulet.2015.03.044 pubmed: 25818331 pmcid: 4495662
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55(4), 352–358. https://doi.org/10.1037/h0043688
doi: 10.1037/h0043688 pubmed: 13539317
Kochunov, P., Robin, D. A., Royall, D. R., Coyle, T., Lancaster, J., Kochunov, V., Schlosser, A. E., & Fox, P. T. (2009). Can structural MRI indices of cerebral integrity track cognitive trends in executive control function during normal maturation and adulthood? Human Brain Mapping, 30(8), 2581–2594. https://doi.org/10.1002/hbm.20689
doi: 10.1002/hbm.20689 pubmed: 19067326
Kopp, B., Lange, F., Howe, J., & Wessel, K. (2014). Age-related changes in neural recruitment for cognitive control. Brain and Cognition, 85, 209–219. https://doi.org/10.1016/j.bandc.2013.12.008
doi: 10.1016/j.bandc.2013.12.008 pubmed: 24434022
Lara, A. H., & Wallis, J. D. (2015). The Role of Prefrontal Cortex in Working Memory: A Mini Review. Frontiers in Systems Neuroscience, 9, Lara, A. H., & Wallis, J. D. (2015). The Role of Prefrontal Cortex in Working Memory: A Mini Review. Frontiers in systems neuroscience, 9, 173. https://doi.org/10.3389/fnsys.2015.0017310.3389/fnsys.2015.00173
Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison test? Korean Journal of Anesthesiology, 71(5), 353–360. https://doi.org/10.4097/kja.d.18.00242
doi: 10.4097/kja.d.18.00242 pubmed: 30157585 pmcid: 6193594
Li, K. Z. H., & Bosman, E. A. (1996). Age differences in stroop-like interference as a function of semantic relatedness. Aging, Neuropsychology, and Cognition, 3(4), 272–284. https://doi.org/10.1080/13825589608256630
doi: 10.1080/13825589608256630
Lubitz, A. F., Niedeggen, M., & Feser, M. (2017). Aging and working memory performance: Electrophysiological correlates of high and low performing elderly. Neuropsychologia, 106, 42–51. https://doi.org/10.1016/j.neuropsychologia.2017.09.002
doi: 10.1016/j.neuropsychologia.2017.09.002 pubmed: 28889995
Ludwig, C., Borella, E., Tettamanti, M., & de Ribaupierre, A. (2010). Adult age differences in the color Stroop test: A comparison between an item-by-item and a blocked version. Archives of Gerontology and Geriatrics, 51(2), 135–142. https://doi.org/10.1016/j.archger.2009.09.040
doi: 10.1016/j.archger.2009.09.040 pubmed: 19846224
Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199–207. https://doi.org/10.1037/0096-3445.130.2.199
doi: 10.1037/0096-3445.130.2.199
McCabe, D. P., Roediger, H. L., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology, 24(2), 222–243. https://doi.org/10.1037/a0017619
doi: 10.1037/a0017619 pubmed: 20230116 pmcid: 2852635
McEvoy, L. K., Pellouchoud, E., Smith, M. E., & Gevins, A. (2001). Neurophysiological signals of working memory in normal aging. Brain Research. Cognitive Brain Research, 11(3), 363–376. https://doi.org/10.1016/s0926-6410(01)00009-x
doi: 10.1016/s0926-6410(01)00009-x pubmed: 11339986
McEvoy, L. K., Smith, M. E., & Gevins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cerebral Cortex, 8(7), 563–574. https://doi.org/10.1093/cercor/8.7.563
doi: 10.1093/cercor/8.7.563 pubmed: 9823478
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
doi: 10.1146/annurev.neuro.24.1.167 pubmed: 11283309
Morgan, H. M., Klein, C., Boehm, S. G., Shapiro, K. L., & Linden, D. E. J. (2008). Working memory load for faces modulates P300, N170, and N250r. Journal of Cognitive Neuroscience, 20(6), 989–1002. https://doi.org/10.1162/jocn.2008.20072
doi: 10.1162/jocn.2008.20072 pubmed: 18211245 pmcid: 2577178
Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2009). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22552–22557. https://doi.org/10.1073/pnas.0908238106
doi: 10.1073/pnas.0908238106 pubmed: 20018709 pmcid: 2799744
Oberauer, K. (2005). Binding and inhibition in working memory: Individual and age differences in short-term recognition. Journal of Experimental Psychology: General, 134(3), 368–387. https://doi.org/10.1037/0096-3445.134.3.368
doi: 10.1037/0096-3445.134.3.368
Oberauer, K., & Kliegl, R. (2001). Beyond resources: Formal models of complexity effects and age differences in working memory. European Journal of Cognitive Psychology, 13(1–2), 187–215. https://doi.org/10.1080/09541440042000278
doi: 10.1080/09541440042000278
Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: An fMRI study. NeuroImage, 18(3), 789–797. https://doi.org/10.1016/S1053-8119(02)00032-0
doi: 10.1016/S1053-8119(02)00032-0 pubmed: 12667855
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131
doi: 10.1002/hbm.20131 pubmed: 15846822 pmcid: 6871745
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320. https://doi.org/10.1037/0882-7974.17.2.299
doi: 10.1037/0882-7974.17.2.299 pubmed: 12061414
Park, D. C., Welsh, R. C., Marshuetz, C., Gutchess, A. H., Mikels, J., Polk, T. A., Noll, D. C., & Taylor, S. F. (2003). Working memory for complex scenes: Age differences in frontal and hippocampal activations. Journal of Cognitive Neuroscience, 15(8), 1122–1134. https://doi.org/10.1162/089892903322598094
doi: 10.1162/089892903322598094 pubmed: 14709231
Penner, I.-K., Kobel, M., Stöcklin, M., Weber, P., Opwis, K., & Calabrese, P. (2012). The Stroop task : Comparison between the original paradigm and computerized versions in children and adults. The Clinical Neuropsychologist, 26(7), 1142–1153. https://doi.org/10.1080/13854046.2012.713513
doi: 10.1080/13854046.2012.713513 pubmed: 22928670
Pinal, D., Zurrón, M., & Díaz, F. (2015a). Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory. Frontiers in Aging Neuroscience, 7, 75. https://doi.org/10.3389/fnagi.2015.00075
doi: 10.3389/fnagi.2015.00075 pubmed: 26029099 pmcid: 4426757
Pinal, D., Zurrón, M., & Díaz, F. (2015b). An event related potentials study of the effects of age, load and maintenance duration on working memory recognition. PLoS One, 10(11), e0143117. https://doi.org/10.1371/journal.pone.0143117
doi: 10.1371/journal.pone.0143117 pubmed: 26569113 pmcid: 4646362
Polich, J. (1996). Meta-analysis of P300 normative aging studies. Psychophysiology, 33(4), 334–353. https://doi.org/10.1111/j.1469-8986.1996.tb01058.x
doi: 10.1111/j.1469-8986.1996.tb01058.x pubmed: 8753933
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
doi: 10.1016/j.clinph.2007.04.019
Pollack, I., & Norman, D. A. (1964). A non-parametric analysis of recognition experiments. Psychonomic Science, 1(5), 125–126. https://doi.org/10.3758/BF03342823
doi: 10.3758/BF03342823
Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In The handbook of aging and cognition (2nd ed., pp. 1–90). Lawrence Erlbaum Associates Publishers.
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182. https://doi.org/10.1111/j.1467-8721.2008.00570.x
doi: 10.1111/j.1467-8721.2008.00570.x
Reuter-Lorenz, P. A., Festini, S. B., & Jantz, T. K. (2016). Chapter 13—Executive functions and neurocognitive aging. In K. W. Schaie & S. L. Willis (Eds.), Handbook of the psychology of aging (Eighth ed., pp. 245–262). Academic Press. https://doi.org/10.1016/B978-0-12-411469-2.00013-3
doi: 10.1016/B978-0-12-411469-2.00013-3
Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: Reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–251. https://doi.org/10.1016/j.conb.2005.03.016
doi: 10.1016/j.conb.2005.03.016 pubmed: 15831410
Reuter-Lorenz, P. A., Stanczak, L., & Miller, A. C. (1999). Neural recruitment and cognitive aging: Two hemispheres are better than one, especially as you age. Psychological Science, 10(6), 494–500. https://doi.org/10.1111/1467-9280.00195
doi: 10.1111/1467-9280.00195
Reuter-Lorenz, P. A., & Sylvester, C.-Y. C. (2005). The cognitive neuroscience of working memory and aging. In cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 186–217). Oxford University Press.
Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731. https://doi.org/10.1162/08989290260138627
doi: 10.1162/08989290260138627 pubmed: 12167257
Rypma, B., Berger, J. S., Genova, H. M., Rebbechi, D., & D’Esposito, M. (2005). Dissociating age-related changes in cognitive strategy and neural efficiency using event- related fMRI. Cortex, 41(4), 582–594. https://doi.org/10.1016/S0010-9452(08)70198-9
doi: 10.1016/S0010-9452(08)70198-9 pubmed: 16042034
Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509–515. https://doi.org/10.1038/74889
doi: 10.1038/74889 pubmed: 10769393
Rypma, B., Eldreth, D. A., & Rebbechi, D. (2007). Age-related differences in activation-performance relations in delayed-response tasks: A multiple component analysis. Cortex, 43(1), 65–76. https://doi.org/10.1016/S0010-9452(08)70446-5
doi: 10.1016/S0010-9452(08)70446-5 pubmed: 17334208
Rypma, B., Prabhakaran, V., Desmond, J. E., & Gabrieli, J. D. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384. https://doi.org/10.1037//0882-7974.16.3.371
doi: 10.1037//0882-7974.16.3.371 pubmed: 11554517
Saliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One, 8(5), e63701. https://doi.org/10.1371/journal.pone.0063701
doi: 10.1371/journal.pone.0063701 pubmed: 23667658 pmcid: 3646823
Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2011). Contralateral delay activity reveals life-span age differences in top-down modulation of working memory contents. Cerebral Cortex, 21(12), 2809–2819. https://doi.org/10.1093/cercor/bhr076
doi: 10.1093/cercor/bhr076 pubmed: 21527784
Schmitt, H., Wolff, M. C., Ferdinand, N. K., & Kray, J. (2014). Age differences in the processing of context information. Journal of Psychophysiology, 28(3), 202–214. https://doi.org/10.1027/0269-8803/a000126
doi: 10.1027/0269-8803/a000126
Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., Maclin, E. L., Gratton, G., & Fabiani, M. (2010). Span, CRUNCH, and beyond: Working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655–669. https://doi.org/10.1162/jocn.2009.21230
doi: 10.1162/jocn.2009.21230 pubmed: 19320550 pmcid: 3666347
Shimamura, A. P., & Jurica, P. J. (1994). Memory interference effects and aging: Findings from a test of frontal lobe function. Neuropsychology, 8(3), 408–412. https://doi.org/10.1037/0894-4105.8.3.408
doi: 10.1037/0894-4105.8.3.408
Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences, 98(4), 2095–2100. https://doi.org/10.1073/pnas.98.4.2095
doi: 10.1073/pnas.98.4.2095
Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117(1), 34–50. https://doi.org/10.1037/0096-3445.117.1.34
doi: 10.1037/0096-3445.117.1.34
Speer, M. E., & Soldan, A. (2015). Cognitive reserve modulates ERPs associated with verbal working memory in healthy younger and older adults. Neurobiology of Aging, 36(3), 1424–1434. https://doi.org/10.1016/j.neurobiolaging.2014.12.025
doi: 10.1016/j.neurobiolaging.2014.12.025 pubmed: 25619663
Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta, 1822(3), 467–473. https://doi.org/10.1016/j.bbadis.2011.09.012
doi: 10.1016/j.bbadis.2011.09.012 pubmed: 21982946
Stern, Y. (2003). The concept of cognitive reserve: A catalyst for research. Journal of Clinical and Experimental Neuropsychology, 25(5), 589–593. https://doi.org/10.1076/jcen.25.5.589.14571
doi: 10.1076/jcen.25.5.589.14571 pubmed: 12815497
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004
doi: 10.1016/j.neuropsychologia.2009.03.004 pubmed: 19467352 pmcid: 2739591
Sternberg, S. (1966). High-speed scanning in human memory. Science (New York, N.Y.), 153(3736), 652–654. https://doi.org/10.1126/science.153.3736.652
doi: 10.1126/science.153.3736.652
Störmer, V. S., Li, S.-C., Heekeren, H. R., & Lindenberger, U. (2013). Normative shifts of cortical mechanisms of encoding contribute to adult age differences in visual-spatial working memory. NeuroImage, 73, 167–175. https://doi.org/10.1016/j.neuroimage.2013.02.004
doi: 10.1016/j.neuroimage.2013.02.004 pubmed: 23415947
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651
doi: 10.1037/h0054651
Touron, D. R., Oransky, N., Meier, M. E., & Hines, J. C. (2010). Metacognitive monitoring and strategic behaviour in working memory performance. Quarterly Journal of Experimental Psychology (2006), 63(8), 1533–1551. https://doi.org/10.1080/17470210903418937
doi: 10.1080/17470210903418937
van Dinteren, R., Arns, M., Jongsma, M. L. A., & Kessels, R. P. C. (2014). Combined frontal and parietal P300 amplitudes indicate compensated cognitive processing across the lifespan. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00294
Verhaeghen, P. (2011). Aging and executive control: Reports of a demise greatly exaggerated. Current Directions in Psychological Science, 20(3), 174–180. https://doi.org/10.1177/0963721411408772
doi: 10.1177/0963721411408772 pubmed: 25866452 pmcid: 4389903
Verhaeghen, P., & Salthouse, T. A. (1997). Meta-analyses of age-cognition relations in adulthood: Estimates of linear and nonlinear age effects and structural models. Psychological Bulletin, 122(3), 231–249. https://doi.org/10.1037/0033-2909.122.3.231
doi: 10.1037/0033-2909.122.3.231 pubmed: 9354147
West, R., Schwarb, H., & Johnson, B. N. (2010). The influence of age and individual differences in executive function on stimulus processing in the oddball task. Cortex, 46(4), 550–563. https://doi.org/10.1016/j.cortex.2009.08.001
doi: 10.1016/j.cortex.2009.08.001 pubmed: 19720373
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272–292. https://doi.org/10.1037/0033-2909.120.2.272
doi: 10.1037/0033-2909.120.2.272 pubmed: 8831298
Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: A psychophysiological analysis of the reciprocity of information-processing resources. Science (New York, N.Y.), 221(4615), 1080–1082.
doi: 10.1126/science.6879207
Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-Back task. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00186
Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28(5), 784–798. https://doi.org/10.1016/j.neurobiolaging.2006.03.002
doi: 10.1016/j.neurobiolaging.2006.03.002 pubmed: 16621168
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
doi: 10.1111/j.1600-0447.1983.tb09716.x pubmed: 6880820
Zuber, S., Ihle, A., Loaiza, V. M., Schnitzspahn, K. M., Stahl, C., Phillips, L. H., Kaller, C. P., & Kliegel, M. (2019). Explaining age differences in working memory: The role of updating, inhibition, and shifting. Psychology & Neuroscience, 12(2), 191–208. https://doi.org/10.1037/pne0000151
doi: 10.1037/pne0000151

Auteurs

Lina Guerrero (L)

Laboratoire de psychologie des Pays de la Loire, LPPL, UR 4638, Nantes Université, Université d'Angers, Chemin la Censive du Tertre, BP 81227, 44312, Nantes Cedex 3, France. lina.guerrerosastoque@univ-nantes.fr.

Badiâa Bouazzaoui (B)

UMR CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), Université de Tours, Université de Poitiers, Tours, France.

Michel Isingrini (M)

UMR CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), Université de Tours, Université de Poitiers, Tours, France.

Lucie Angel (L)

UMR CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), Université de Tours, Université de Poitiers, Tours, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH