Modulatory effect of long-term treatment with escitalopram and clonazepam on the expression of anxiety-related neuropeptides: neuromedin U, neuropeptide S and their receptors in the rat brain.
Clonazepam
Escitalopram
Neuromedin U
Neuropeptide S
Neuropeptides
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
14
02
2022
accepted:
06
05
2022
revised:
17
04
2022
pubmed:
12
6
2022
medline:
14
9
2022
entrez:
11
6
2022
Statut:
ppublish
Résumé
Newly identified multifunctional peptidergic modulators of stress responses: neuromedin U (NMU) and neuropeptide S (NPS) are involved in the wide spectrum of brain functions. However, there are no reports dealing with potential molecular relationships between the action of diverse anxiolytic or antidepressant drugs and NMU and NPS signaling in the brain. The present work was therefore focused on local expression of the aforementioned stress-related neuropeptides in the rat brain after long-term treatment with escitalopram and clonazepam. Studies were carried out on adult, male Sprague-Dawley rats that were divided into 3 groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 5 mg/kg daily), and clonazepam (at single dose 0.5 mg/kg). All individuals were sacrificed under anaesthesia and the whole brain excised. Total mRNA was isolated from homogenized samples of amygdala, hippocampus, hypothalamus, thalamus, cerebellum and brainstem. Real time-PCR method was used for estimation of related NPS, NPS receptor (NPSR), NMU, NMU and receptor 2 (NMUR2) mRNA expression. The whole brains were also sliced for general immunohistochemical assessment of the neuropeptides expression. Chronic administration of clonazepam resulted in an increase of NMU mRNA expression and formation of NMU-expressing fibers in the amygdala, while escitalopram produced a significant decrease in NPSR mRNA level in hypothalamus. Long-term escitalopram administration affects the local expression of examined neuropeptides mRNA in a varied manner depending on the brain structure. Pharmacological effects of escitalopram may be connected with local at least partially NPSR-related alterations in the NPS/NMU/NMUR2 gene expression at the level selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Sections du résumé
BACKGROUND
BACKGROUND
Newly identified multifunctional peptidergic modulators of stress responses: neuromedin U (NMU) and neuropeptide S (NPS) are involved in the wide spectrum of brain functions. However, there are no reports dealing with potential molecular relationships between the action of diverse anxiolytic or antidepressant drugs and NMU and NPS signaling in the brain. The present work was therefore focused on local expression of the aforementioned stress-related neuropeptides in the rat brain after long-term treatment with escitalopram and clonazepam.
METHODS
METHODS
Studies were carried out on adult, male Sprague-Dawley rats that were divided into 3 groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 5 mg/kg daily), and clonazepam (at single dose 0.5 mg/kg). All individuals were sacrificed under anaesthesia and the whole brain excised. Total mRNA was isolated from homogenized samples of amygdala, hippocampus, hypothalamus, thalamus, cerebellum and brainstem. Real time-PCR method was used for estimation of related NPS, NPS receptor (NPSR), NMU, NMU and receptor 2 (NMUR2) mRNA expression. The whole brains were also sliced for general immunohistochemical assessment of the neuropeptides expression.
RESULTS
RESULTS
Chronic administration of clonazepam resulted in an increase of NMU mRNA expression and formation of NMU-expressing fibers in the amygdala, while escitalopram produced a significant decrease in NPSR mRNA level in hypothalamus. Long-term escitalopram administration affects the local expression of examined neuropeptides mRNA in a varied manner depending on the brain structure.
CONCLUSIONS
CONCLUSIONS
Pharmacological effects of escitalopram may be connected with local at least partially NPSR-related alterations in the NPS/NMU/NMUR2 gene expression at the level selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Identifiants
pubmed: 35690686
doi: 10.1007/s11033-022-07578-9
pii: 10.1007/s11033-022-07578-9
doi:
Substances chimiques
GABA Modulators
0
Neuropeptides
0
RNA, Messenger
0
Receptors, Neuropeptide
0
Receptors, Neurotransmitter
0
neuromedin U receptor
0
neuropeptide S receptor, rat
0
neuropeptide S, rat
0
neuromedin U
117505-80-3
Escitalopram
4O4S742ANY
Clonazepam
5PE9FDE8GB
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9041-9049Subventions
Organisme : Medical University of Silesia
ID : Medical University of Silesia
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Teranishi H, Hanada R (2021) Neuromedin U, a Key Molecule in Metabolic Disorders. Int J Mol Sci 2021 22(8):4238. https://doi.org/10.3390/ijms22084238
Hsu SH, Luo CW (2007) Molecular dissection of G protein preference using Gsalpha chimeras reveals novel ligand signaling of GPCRs. Am J Physiol Endocrinol Metab 293(4):E1021–1029. https://doi.org/10.1152/ajpendo.00003.2007
doi: 10.1152/ajpendo.00003.2007
pubmed: 17652154
Graham ES, Turnbull Y, Fotheringham P, Nilaweera K, Mercer JG, Morgan PJ, Barrett P (2003) Neuromedin U and Neuromedin U receptor-2 expression in the mouse and rat hypothalamus: effects of nutritional status. J Neurochem 87(5):1165–1173. https://doi.org/10.1046/j.1471-4159.2003.02079.x
doi: 10.1046/j.1471-4159.2003.02079.x
pubmed: 14622096
Tanaka M, Telegdy G (2014) Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav Brain Res 259:196–199. https://doi.org/10.1016/j.bbr.2013.11.005
doi: 10.1016/j.bbr.2013.11.005
pubmed: 24239690
Vallöf D, Kalafateli AL, Jerlhag E (2020) Brain region-specific neuromedin U signalling regulates alcohol-related behaviours and food intake in rodents. Addict Biol 25:e12764. https://doi.org/10.1111/adb.12764
doi: 10.1111/adb.12764
pubmed: 31069918
Reinscheid RK, Ruzza C (2021) Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 14(5):401. https://doi.org/10.3390/ph14050401
doi: 10.3390/ph14050401
Pape HC, Jüngling K, Seidenbecher T, Lesting J, Reinscheid RK (2010) Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology 58(1):29–34. https://doi.org/10.1016/j.neuropharm.2009.06.001
doi: 10.1016/j.neuropharm.2009.06.001
pubmed: 19523478
Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK (2011) Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol 519(10):1867–1893. https://doi.org/10.1002/cne.22606
doi: 10.1002/cne.22606
pubmed: 21452235
Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK (2007) Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol 500(1):84–102. https://doi.org/10.1002/cne.21159
doi: 10.1002/cne.21159
pubmed: 17099900
Adori C, Barde S, Bogdanovic N, Uhlén M, Reinscheid RR, Kovacs GG, Hökfelt T (2015) Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons. Front Neuroanat 9:126. https://doi.org/10.3389/fnana.2015.00126
doi: 10.3389/fnana.2015.00126
pubmed: 26441556
pmcid: 4585187
Tobinski AM, Rappeneau V (2021) Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 14(8):780. https://doi.org/10.3390/ph14080780
doi: 10.3390/ph14080780
Grund T, Neumann ID (2018) Neuropeptide S Induces Acute Anxiolysis by Phospholipase C-Dependent Signaling within the Medial Amygdala. Neuropsychopharmacology 43(5):1156–1163. https://doi.org/10.1038/npp.2017.169
doi: 10.1038/npp.2017.169
pubmed: 28805209
Si W, Aluisio L, Okamura N, Clark SD, Fraser I, Sutton SW, Bonaventure P, Reinscheid RK (2010) Neuropeptide S stimulates dopaminergic neurotransmission in the medial prefrontal cortex. J Neurochem 115(2):475–482. https://doi.org/10.1111/j.1471-4159.2010.06947.x
doi: 10.1111/j.1471-4159.2010.06947.x
pubmed: 20722970
pmcid: 2970681
Domschke K, Danniowski U, Hohoff C, Ohrmann P, Bauer J, Kugel H, Zwanger P, Heindel W, Deckert J, Arolt V, Suslow T, Baune BT (2010) Neuropeptide Y (NPY) gene: Impact on emotional processing and treatment response in anxious depression. Eur Neuropsychopharmacol 20:301–309. https://doi.org/10.1016/j.euroneuro.2009.09.006
doi: 10.1016/j.euroneuro.2009.09.006
pubmed: 19854625
Fendt M, Imobersteg S, Bürki H, McAllister KH, Sailer AW (2010) Intra-amygdala injections of neuropeptide S block fear-potentiated startle. Neurosci Lett 474(3):154–157. https://doi.org/10.1016/j.neulet.2010.03.028
doi: 10.1016/j.neulet.2010.03.028
pubmed: 20298749
Strawn JR, Mills JA, Schroeder H, Mossman SA, Varney ST, Ramsey LB, Poweleit EA, Desta Z, Cecil K, DelBello MP (2020) Escitalopram in Adolescents With Generalized Anxiety Disorder: A Double-Blind, Randomized, Placebo-Controlled Study. J Clin Psychiatry 81(5):20m13396. https://doi.org/10.4088/jcp.20m13396
doi: 10.4088/jcp.20m13396
pubmed: 32857933
pmcid: 7504974
Lapointe T, Hudson R, Daniels S, Melanson B, Zhou Y, Leri F (2019) Effects of combined escitalopram and aripiprazole in rats: role of the 5-HT(1a) receptor. Psychopharmacology 236(7):2273–2281. https://doi.org/10.1007/s00213-019-05225-z
doi: 10.1007/s00213-019-05225-z
pubmed: 30903210
Ranjbar S, Pai N, Deng C (2013) The association of antidepressant medication and body weight gain. Online J Health Allied Sci 12:1–9
Schule C (2007) Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol 2007;19(3):213–26. doi: https://doi.org/10.1111/j.1365-2826.2006.01516.x
Flandreau EI, Bourke CH, Ressler KJ, Vale WW, Nemeroff CB, Owens MJ (2013) Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala. Psychoneuroendocrinology 38(8):1349–1361. doi: https://doi.org/10.1016/j.psyneuen.2012.11.020
doi: 10.1016/j.psyneuen.2012.11.020
pubmed: 23267723
Sattin A, Pekary AE, Blood J (2008) Escitalopram regulates expression of TRH and TRH-like peptides in rat brain and peripheral tissues. Neuroendocrinology 88(2):135–146. doi: https://doi.org/10.1159/000121595
doi: 10.1159/000121595
pubmed: 18354249
Pałasz A, Suszka-Świtek A, Filipczyk Ł, Bogus K, Rojczyk E, Worthington J, Krzystanek M, Wiaderkiewicz R (2016) Escitalopram affects spexin expression in the rat hypothalamus, hippocampus and striatum. Pharmacol Rep 68(6):1326–1331. doi: https://doi.org/10.1016/j.pharep.2016.09.002
doi: 10.1016/j.pharep.2016.09.002
pubmed: 27710862
Fava GA, Balon R, Rickels K (2015) Benzodiazepines in Anxiety Disorders. JAMA Psychiatry 72(7):733–734. https://doi.org/10.1001/jamapsychiatry.2015.0182
doi: 10.1001/jamapsychiatry.2015.0182
pubmed: 25923032
Lima L, Trejo E, Urbina M (2020) Serotonin turnover rate, [3H]paroxetine binding sites, and 5-HT1A receptors in the hippocampus of rats subchronically treated with clonazepam. Neuropharmacology 34(10):1327–1333. https://doi.org/10.1016/0028-3908(95)00103-d
doi: 10.1016/0028-3908(95)00103-d
Mikulecká A, Subrt M, Stuchlík A, Kubová H (2014) Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Front Behav Neurosci 2014 Mar 28:8:101. doi: https://doi.org/10.3389/fnbeh.2014.00101
doi: 10.3389/fnbeh.2014.00101
Anan M, Higa R, Shikano K, Shide M, Soda A, Apolinario MEC, Mori K, Shin T, Miyazato M, Mimata H et al (2020) Cocaine has some effect on neuromedin U expressing neurons related to the brain reward system. Heliyon 6:e03947. https://doi.org/10.1016/j.heliyon.2020.e03947
doi: 10.1016/j.heliyon.2020.e03947
pubmed: 32462086
pmcid: 7240118
Lydall GJ, Bass NJ, McQuillin A, Lawrence J, Anjorin A, Kandaswamy R, Pereira A, Guerrini I, Curtis D, Vine AE et al (2011) Confirmation of prior evidence of genetic susceptibility to alcoholism in a genome-wide association study of comorbid alcoholism and bipolar disorder. Psychiatr Genet 21(6):294–306. https://doi.org/10.1097/YPG.0b013e32834915c2
doi: 10.1097/YPG.0b013e32834915c2
pubmed: 21876473
pmcid: 3372889
Kasper JM, Smith AE, Hommel JD (2018) Cocaine-Evoked Locomotor Activity Negatively Correlates With the Expression of Neuromedin U Receptor 2 in the Nucleus Accumbens. Front Behav Neurosci 12:271. https://doi.org/10.3389/fnbeh.2018.00271
doi: 10.3389/fnbeh.2018.00271
pubmed: 30483076
pmcid: 6243026
Pałasz A, Piwowarczyk-Nowak A, Suszka-Świtek A, Bogus K, Filipczyk Ł, Vecchia AD, Mordecka-Chamera K, Menezes IC, Worthington JJ, Krzystanek M, Wiaderkiewicz R (2020) Escitalopram as a modulator of proopiomelanocortin, kisspeptin, Kiss1R and MCHR1 gene expressions in the male rat brain. Mol Biol Rep 47(10):8273–8278. doi: https://doi.org/10.1007/s11033-020-05806-8
doi: 10.1007/s11033-020-05806-8
pubmed: 32914264
pmcid: 7588374
Jiang JH, Peng YL, Zhang PJ, Xue HX, He Z, Liang XY, Chang M (2018) The ventromedial hypothalamic nucleus plays an important role in anxiolytic-like effect of neuropeptide S. Neuropeptides 67:36–44. https://doi.org/10.1016/j.npep.2017.11.004
doi: 10.1016/j.npep.2017.11.004
pubmed: 29195839
Gross CT, Canteras NS (2012) The many paths to fear. Nat Rev Neurosci 13(9):651–658. https://doi.org/10.1038/nrn3301
doi: 10.1038/nrn3301
pubmed: 22850830