Utilizing longitudinal data in assessing all-cause mortality in patients hospitalized with heart failure.
Big data analysis
Heart failure
Machine learning
Mortality prediction
Precision medicine
Risk stratification
Journal
ESC heart failure
ISSN: 2055-5822
Titre abrégé: ESC Heart Fail
Pays: England
ID NLM: 101669191
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
14
04
2022
received:
27
11
2021
accepted:
31
05
2022
pubmed:
14
6
2022
medline:
6
12
2022
entrez:
13
6
2022
Statut:
ppublish
Résumé
Risk stratification in patients with a new onset or worsened heart failure (HF) is essential for clinical decision making. We have utilized a novel approach to enrich patient level prognostication using longitudinally gathered data to develop ML-based algorithms predicting all-cause 30, 90, 180, 360, and 720 day mortality. In a cohort of 2449 HF patients hospitalized between 1 January 2011 and 31 December 2017, we utilized 422 parameters derived from 151 451 patient exams. They included clinical phenotyping, ECG, laboratory, echocardiography, catheterization data or percutaneous and surgical interventions reflecting the standard of care as captured in individual electronic records. The development of predictive models consisted of 101 iterations of repeated random subsampling splits into balanced training and validation sets. ML models yielded area under the receiver operating characteristic curve (AUC-ROC) performance ranging from 0.83 to 0.89 on the outcome-balanced validation set in predicting all-cause mortality at aforementioned time-limits. The 1 year mortality prediction model recorded an AUC of 0.85. We observed stable model performance across all HF phenotypes: HFpEF 0.83 AUC, HFmrEF 0.85 AUC, and HFrEF 0.86 AUC, respectively. Model performance improved when utilizing data from more hospital contacts compared with only data collected at baseline. Our findings present a novel, patient-level, comprehensive ML-based algorithm for predicting all-cause mortality in new or worsened heart failure. Its robust performance across phenotypes throughout the longitudinal patient follow-up suggests its potential in point-of-care clinical risk stratification.
Identifiants
pubmed: 35695324
doi: 10.1002/ehf2.14011
pmc: PMC9715844
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3575-3584Informations de copyright
© 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
Références
J Card Fail. 2002 Aug;8(4):216-24
pubmed: 12397569
Eur Heart J. 2013 May;34(19):1404-13
pubmed: 23095984
JACC Heart Fail. 2014 Oct;2(5):440-6
pubmed: 25194291
ESC Heart Fail. 2022 Oct;9(5):3575-3584
pubmed: 35695324
BMC Med. 2021 Jan 27;19(1):21
pubmed: 33499866
Front Cardiovasc Med. 2021 Feb 25;8:611055
pubmed: 33718444
Circulation. 2019 Aug 16;:
pubmed: 31416346
J Int Med Res. 2020 Apr;48(4):300060520911500
pubmed: 32338101
Lancet. 2019 Sep 7;394(10201):861-867
pubmed: 31378392
Circulation. 2006 Mar 21;113(11):1424-33
pubmed: 16534009
J Biomed Inform. 2020 Jan;101:103337
pubmed: 31916973
Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70
pubmed: 25712077
Card Fail Rev. 2019 Feb;5(1):50-56
pubmed: 30847246
Eur J Heart Fail. 2021 Jun;23(6):983-991
pubmed: 33651430
Curr Heart Fail Rep. 2017 Apr;14(2):106-116
pubmed: 28205040
Eur Heart J. 2020 May 7;41(18):1747-1756
pubmed: 31923316
Herz. 2016 Dec;41(8):655-663
pubmed: 27858115