Mating pair stabilization mediates bacterial conjugation species specificity.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
07 2022
Historique:
received: 18 11 2021
accepted: 05 05 2022
pubmed: 14 6 2022
medline: 6 7 2022
entrez: 13 6 2022
Statut: ppublish

Résumé

Bacterial conjugation mediates contact-dependent transfer of DNA from donor to recipient bacteria, thus facilitating the spread of virulence and resistance plasmids. Here we describe how variants of the plasmid-encoded donor outer membrane (OM) protein TraN cooperate with distinct OM receptors in recipients to mediate mating pair stabilization and efficient DNA transfer. We show that TraN from the plasmid pKpQIL (Klebsiella pneumoniae) interacts with OmpK36, plasmids from R100-1 (Shigella flexneri) and pSLT (Salmonella Typhimurium) interact with OmpW, and the prototypical F plasmid (Escherichia coli) interacts with OmpA. Cryo-EM analysis revealed that TraN

Identifiants

pubmed: 35697796
doi: 10.1038/s41564-022-01146-4
pii: 10.1038/s41564-022-01146-4
pmc: PMC9246713
doi:

Substances chimiques

Bacterial Proteins 0
Porins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1016-1027

Subventions

Organisme : NIGMS NIH HHS
ID : U24 GM116790
Pays : United States
Organisme : Medical Research Council
ID : MR/N020103/1
Pays : United Kingdom
Organisme : NCRR NIH HHS
ID : G20 RR031199
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM122510
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR025067
Pays : United States
Organisme : Wellcome Trust
ID : 107057/Z/15/Z
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R502376/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M011178/1
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

Waksman, G. From conjugation to T4S systems in Gram‐negative bacteria: a mechanistic biology perspective. EMBO Rep. 20, e47012 (2019).
pubmed: 30602585 pmcid: 6362355 doi: 10.15252/embr.201847012
Achtman, M., Morelli, G. & Schwuchow, S. Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates. J. Bacteriol. 135, 1053–1061 (1978).
pubmed: 357413 pmcid: 222482 doi: 10.1128/jb.135.3.1053-1061.1978
Clarke, M., Maddera, L., Harris, R. L. & Silverman, P. M. F-pili dynamics by live-cell imaging. Proc. Natl. Acad. Sci. USA 105, 17978–197981 (2008).
pubmed: 19004777 pmcid: 2582581 doi: 10.1073/pnas.0806786105
Achtman, M. Mating aggregates in Escherichia coli conjugation. J. Bacteriol. 123, 505–515 (1975).
pubmed: 1097414 pmcid: 235755 doi: 10.1128/jb.123.2.505-515.1975
Costa, T. R. D. et al. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166, 1436–1444.e10 (2016).
pubmed: 27610568 pmcid: 5018250 doi: 10.1016/j.cell.2016.08.025
Hu, B., Khara, P. & Christie, P. J. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 116, 14222–14227 (2019).
pubmed: 31239340 pmcid: 6628675 doi: 10.1073/pnas.1904428116
Zheng, W. et al. Cryoelectron-microscopic structure of the pKpQIL conjugative pili from carbapenem-resistant Klebsiella pneumoniae. Structure 28, 1321–1328.e2 (2020).
pubmed: 32916103 pmcid: 7710920 doi: 10.1016/j.str.2020.08.010
Fernandez-Lopez, R., de Toro, M., Moncalian, G., Garcillan-Barcia, M. P. & de la Cruz, F. Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front. Mol. Biosci. 3, 71 (2016).
pubmed: 27891505 pmcid: 5102898 doi: 10.3389/fmolb.2016.00071
Villa, L., García-Fernández, A., Fortini, D. & Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 65, 2518–2529 (2010).
pubmed: 20935300 doi: 10.1093/jac/dkq347
Nakaya, R., Nakamura, A. & Murata, Y. Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun. 3, 654–659 (1960).
pubmed: 13727669 doi: 10.1016/0006-291X(60)90081-4
Brinkley, C. et al. Nucleotide sequence analysis of the enteropathogenic Escherichia coli adherence factor plasmid pMAR7. Infect. Immun. 74, 5408–5413 (2006).
pubmed: 16926437 pmcid: 1594828 doi: 10.1128/IAI.01840-05
Ahmer, B. M. M., Tran, M. & Heffron, F. The virulence plasmid of Salmonella typhimurium is self-transmissible. J. Bacteriol. 181, 1364–1368 (1999).
pubmed: 9973370 pmcid: 93521 doi: 10.1128/JB.181.4.1364-1368.1999
Skurray, R. A., Hancock, R. E. W. & Reeves, P. Con
pubmed: 4604263 pmcid: 245674 doi: 10.1128/jb.119.3.726-735.1974
Havekes, L. M. & Hoekstra, W. P. M. Characterization of an Escherichia coli K-12 F-Con-mutant. J. Bacteriol. 126, 593–600 (1976).
pubmed: 770448 pmcid: 233191 doi: 10.1128/jb.126.2.593-600.1976
Manoil, C. & Rosenbusch, J. P. Conjugation-deficient mutants of Escherichia coli distinguish classes of functions of the outer membrane OmpA protein. Mol. Gen. Genet. 187, 148–156 (1982).
pubmed: 6819426 doi: 10.1007/BF00384398
Klimke, W. A. & Frost, L. S. Genetic analysis of the role of the transfer gene, traN, of the F and R100-1 plasmids in mating pair stabilization during conjugation. J. Bacteriol. 180, 4036–4043 (1998).
pubmed: 9696748 pmcid: 107396 doi: 10.1128/JB.180.16.4036-4043.1998
Klimke, W. A. et al. The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane protein with two regions that are important for its function in conjugation. Microbiology 151, 3527–3540 (2005).
pubmed: 16272376 doi: 10.1099/mic.0.28025-0
Achtman, M., Schwuchow, S., Helmuth, R., Morelli, G. & Manning, P. A. Cell-cell interactions in conjugating Escherichia coli: Con
doi: 10.1007/BF00267382
Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589–603 (1998).
pubmed: 9767057 pmcid: 88898 doi: 10.1128/CMR.11.4.589
Doumith, M. et al. Major role of pKpQIL-like plasmids in the early dissemination of KPC-type carbapenemases in the UK. J. Antimicrob. Chemother. 72, 2241–2248 (2017).
pubmed: 28498924 doi: 10.1093/jac/dkx141
Navon-Venezia, S., Kondratyeva, K. & Carattoli, A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41, 252–275 (2017).
pubmed: 28521338 doi: 10.1093/femsre/fux013
Chen, L. et al. Complete sequence of a bla
pubmed: 23295924 pmcid: 3591897 doi: 10.1128/AAC.02332-12
David, S. et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 117, 25043–25054 (2020).
pubmed: 32968015 pmcid: 7587227 doi: 10.1073/pnas.2003407117
Hardiman, C. A. et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob. Agents Chemother. 60, 4910–4919 (2016).
pubmed: 27270289 pmcid: 4958172 doi: 10.1128/AAC.00014-16
Tsai, Y.-K. et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 55, 1485–1493 (2011).
pubmed: 21282452 pmcid: 3067157 doi: 10.1128/AAC.01275-10
Acosta-Gutiérrez, S. et al. Getting drugs into Gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4, 1487–1498 (2018).
pubmed: 29962203 doi: 10.1021/acsinfecdis.8b00108
Rocker, A. et al. Global trends in proteome remodeling of the outer membrane modulate antimicrobial permeability in Klebsiella pneumoniae. mBio 11, e00603–e00620 (2020).
pubmed: 32291303 pmcid: 7157821 doi: 10.1128/mBio.00603-20
Fajardo-Lubián, A., Ben Zakour, N. L., Agyekum, A., Qi, Q. & Iredell, J. R. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog. 15, e1007218 (2019).
pubmed: 30875398 pmcid: 6436753 doi: 10.1371/journal.ppat.1007218
Wong, J. L. C. et al. OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat. Commun. 10, 3957 (2019).
pubmed: 31477712 pmcid: 6718652 doi: 10.1038/s41467-019-11756-y
Finnegan, D. & Willetts, N. The nature of the transfer inhibitor of several F-like plasmids. Mol. Gen. Genet. 119, 57–66 (1972).
pubmed: 4344325 doi: 10.1007/BF00270444
Van der Ley, P., Bekkers, A., Van Meersbergen, J. & Tommassen, J. A comparative study on the phoE genes of three enterobacterial species: implications for structure‐function relationships in a pore‐forming protein of the outer membrane. Eur. J. Biochem. 164, 469–475 (1987).
pubmed: 3032618 doi: 10.1111/j.1432-1033.1987.tb11080.x
Xiao, M., Lai, Y., Sun, J., Chen, G. & Yan, A. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli. Front. Microbiol. 7, 799 (2016).
pubmed: 27303386 pmcid: 4886647 doi: 10.3389/fmicb.2016.00799
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl. Acad. Sci. USA 118, e2008731118 (2021).
pubmed: 33526659 pmcid: 8017928 doi: 10.1073/pnas.2008731118
Gerts, E. M., Yu, Y. K., Agarwala, R., Schäffer, A. A. & Altschul, S. F. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 4, 41 (2006).
doi: 10.1186/1741-7007-4-41
Harrington, L. C. & Rogerson, A. C. The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J. Bacteriol. 172, 7263–7264 (1990).
pubmed: 1979324 pmcid: 210852 doi: 10.1128/jb.172.12.7263-7264.1990
Babić, A., Lindner, A. B., Vulić, M., Stewart, E. J. & Radman, M. Direct visualization of horizontal gene transfer. Science 319, 1533–1536 (2008).
pubmed: 18339941 doi: 10.1126/science.1153498
Llosa, M., Gomis-Rüth, F. X., Coll, M. & de la Cruz, F.Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45, 1–8 (2002).
pubmed: 12100543 doi: 10.1046/j.1365-2958.2002.03014.x
Chen, L. et al. Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York hospitals. Antimicrob. Agents Chemother. 58, 2871–2877 (2014).
pubmed: 24614371 pmcid: 3993205 doi: 10.1128/AAC.00120-14
Buckner, M. M. C. et al. Clinically relevant plasmid-host interactions indicate that transcriptional and not genomic modifications ameliorate fitness costs of Klebsiella pneumoniae carbapenemase-carrying plasmids. mBio 9, e02303–e02317 (2018).
pubmed: 29691332 pmcid: 5915730 doi: 10.1128/mBio.02303-17
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
doi: 10.1002/pro.3235 pubmed: 28710774
Miroux, B. & Walker, J. E. Overproduction of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).
pubmed: 8757792 doi: 10.1006/jmbi.1996.0399
Beis, K., Whitfield, C., Booth, I. & Naismith, J. H. Two-step purification of outer membrane proteins. Int. J. Biol. Macromol. 39, 10–14 (2006).
pubmed: 16423387 pmcid: 3314194 doi: 10.1016/j.ijbiomac.2005.12.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
pubmed: 24451623 pmcid: 3998144 doi: 10.1093/bioinformatics/btu033
Argimón, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2, e000093 (2016).
pubmed: 28348833 pmcid: 5320705

Auteurs

Wen Wen Low (WW)

MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
Department of Life Sciences, Imperial College, London, UK.

Joshua L C Wong (JLC)

MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
Department of Life Sciences, Imperial College, London, UK.

Leticia C Beltran (LC)

Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.

Chloe Seddon (C)

MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
Department of Life Sciences, Imperial College, London, UK.
Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK.

Sophia David (S)

Centre for Genomic Pathogen Surveillance, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.

Hok-Sau Kwong (HS)

Department of Life Sciences, Imperial College, London, UK.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.

Tatiana Bizeau (T)

Department of Life Sciences, Imperial College, London, UK.

Fengbin Wang (F)

Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.

Alejandro Peña (A)

MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
Department of Life Sciences, Imperial College, London, UK.

Tiago R D Costa (TRD)

MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
Department of Life Sciences, Imperial College, London, UK.

Bach Pham (B)

Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.

Min Chen (M)

Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.

Edward H Egelman (EH)

Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.

Konstantinos Beis (K)

Department of Life Sciences, Imperial College, London, UK.
Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK.

Gad Frankel (G)

MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK. g.frankel@imperial.ac.uk.
Department of Life Sciences, Imperial College, London, UK. g.frankel@imperial.ac.uk.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Female Biofilms Animals Lactobacillus Mice

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli

Classifications MeSH