Mating pair stabilization mediates bacterial conjugation species specificity.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
18
11
2021
accepted:
05
05
2022
pubmed:
14
6
2022
medline:
6
7
2022
entrez:
13
6
2022
Statut:
ppublish
Résumé
Bacterial conjugation mediates contact-dependent transfer of DNA from donor to recipient bacteria, thus facilitating the spread of virulence and resistance plasmids. Here we describe how variants of the plasmid-encoded donor outer membrane (OM) protein TraN cooperate with distinct OM receptors in recipients to mediate mating pair stabilization and efficient DNA transfer. We show that TraN from the plasmid pKpQIL (Klebsiella pneumoniae) interacts with OmpK36, plasmids from R100-1 (Shigella flexneri) and pSLT (Salmonella Typhimurium) interact with OmpW, and the prototypical F plasmid (Escherichia coli) interacts with OmpA. Cryo-EM analysis revealed that TraN
Identifiants
pubmed: 35697796
doi: 10.1038/s41564-022-01146-4
pii: 10.1038/s41564-022-01146-4
pmc: PMC9246713
doi:
Substances chimiques
Bacterial Proteins
0
Porins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1016-1027Subventions
Organisme : NIGMS NIH HHS
ID : U24 GM116790
Pays : United States
Organisme : Medical Research Council
ID : MR/N020103/1
Pays : United Kingdom
Organisme : NCRR NIH HHS
ID : G20 RR031199
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM122510
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR025067
Pays : United States
Organisme : Wellcome Trust
ID : 107057/Z/15/Z
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R502376/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M011178/1
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Waksman, G. From conjugation to T4S systems in Gram‐negative bacteria: a mechanistic biology perspective. EMBO Rep. 20, e47012 (2019).
pubmed: 30602585
pmcid: 6362355
doi: 10.15252/embr.201847012
Achtman, M., Morelli, G. & Schwuchow, S. Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates. J. Bacteriol. 135, 1053–1061 (1978).
pubmed: 357413
pmcid: 222482
doi: 10.1128/jb.135.3.1053-1061.1978
Clarke, M., Maddera, L., Harris, R. L. & Silverman, P. M. F-pili dynamics by live-cell imaging. Proc. Natl. Acad. Sci. USA 105, 17978–197981 (2008).
pubmed: 19004777
pmcid: 2582581
doi: 10.1073/pnas.0806786105
Achtman, M. Mating aggregates in Escherichia coli conjugation. J. Bacteriol. 123, 505–515 (1975).
pubmed: 1097414
pmcid: 235755
doi: 10.1128/jb.123.2.505-515.1975
Costa, T. R. D. et al. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166, 1436–1444.e10 (2016).
pubmed: 27610568
pmcid: 5018250
doi: 10.1016/j.cell.2016.08.025
Hu, B., Khara, P. & Christie, P. J. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 116, 14222–14227 (2019).
pubmed: 31239340
pmcid: 6628675
doi: 10.1073/pnas.1904428116
Zheng, W. et al. Cryoelectron-microscopic structure of the pKpQIL conjugative pili from carbapenem-resistant Klebsiella pneumoniae. Structure 28, 1321–1328.e2 (2020).
pubmed: 32916103
pmcid: 7710920
doi: 10.1016/j.str.2020.08.010
Fernandez-Lopez, R., de Toro, M., Moncalian, G., Garcillan-Barcia, M. P. & de la Cruz, F. Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front. Mol. Biosci. 3, 71 (2016).
pubmed: 27891505
pmcid: 5102898
doi: 10.3389/fmolb.2016.00071
Villa, L., García-Fernández, A., Fortini, D. & Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 65, 2518–2529 (2010).
pubmed: 20935300
doi: 10.1093/jac/dkq347
Nakaya, R., Nakamura, A. & Murata, Y. Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun. 3, 654–659 (1960).
pubmed: 13727669
doi: 10.1016/0006-291X(60)90081-4
Brinkley, C. et al. Nucleotide sequence analysis of the enteropathogenic Escherichia coli adherence factor plasmid pMAR7. Infect. Immun. 74, 5408–5413 (2006).
pubmed: 16926437
pmcid: 1594828
doi: 10.1128/IAI.01840-05
Ahmer, B. M. M., Tran, M. & Heffron, F. The virulence plasmid of Salmonella typhimurium is self-transmissible. J. Bacteriol. 181, 1364–1368 (1999).
pubmed: 9973370
pmcid: 93521
doi: 10.1128/JB.181.4.1364-1368.1999
Skurray, R. A., Hancock, R. E. W. & Reeves, P. Con
pubmed: 4604263
pmcid: 245674
doi: 10.1128/jb.119.3.726-735.1974
Havekes, L. M. & Hoekstra, W. P. M. Characterization of an Escherichia coli K-12 F-Con-mutant. J. Bacteriol. 126, 593–600 (1976).
pubmed: 770448
pmcid: 233191
doi: 10.1128/jb.126.2.593-600.1976
Manoil, C. & Rosenbusch, J. P. Conjugation-deficient mutants of Escherichia coli distinguish classes of functions of the outer membrane OmpA protein. Mol. Gen. Genet. 187, 148–156 (1982).
pubmed: 6819426
doi: 10.1007/BF00384398
Klimke, W. A. & Frost, L. S. Genetic analysis of the role of the transfer gene, traN, of the F and R100-1 plasmids in mating pair stabilization during conjugation. J. Bacteriol. 180, 4036–4043 (1998).
pubmed: 9696748
pmcid: 107396
doi: 10.1128/JB.180.16.4036-4043.1998
Klimke, W. A. et al. The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane protein with two regions that are important for its function in conjugation. Microbiology 151, 3527–3540 (2005).
pubmed: 16272376
doi: 10.1099/mic.0.28025-0
Achtman, M., Schwuchow, S., Helmuth, R., Morelli, G. & Manning, P. A. Cell-cell interactions in conjugating Escherichia coli: Con
doi: 10.1007/BF00267382
Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589–603 (1998).
pubmed: 9767057
pmcid: 88898
doi: 10.1128/CMR.11.4.589
Doumith, M. et al. Major role of pKpQIL-like plasmids in the early dissemination of KPC-type carbapenemases in the UK. J. Antimicrob. Chemother. 72, 2241–2248 (2017).
pubmed: 28498924
doi: 10.1093/jac/dkx141
Navon-Venezia, S., Kondratyeva, K. & Carattoli, A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41, 252–275 (2017).
pubmed: 28521338
doi: 10.1093/femsre/fux013
Chen, L. et al. Complete sequence of a bla
pubmed: 23295924
pmcid: 3591897
doi: 10.1128/AAC.02332-12
David, S. et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 117, 25043–25054 (2020).
pubmed: 32968015
pmcid: 7587227
doi: 10.1073/pnas.2003407117
Hardiman, C. A. et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob. Agents Chemother. 60, 4910–4919 (2016).
pubmed: 27270289
pmcid: 4958172
doi: 10.1128/AAC.00014-16
Tsai, Y.-K. et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 55, 1485–1493 (2011).
pubmed: 21282452
pmcid: 3067157
doi: 10.1128/AAC.01275-10
Acosta-Gutiérrez, S. et al. Getting drugs into Gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4, 1487–1498 (2018).
pubmed: 29962203
doi: 10.1021/acsinfecdis.8b00108
Rocker, A. et al. Global trends in proteome remodeling of the outer membrane modulate antimicrobial permeability in Klebsiella pneumoniae. mBio 11, e00603–e00620 (2020).
pubmed: 32291303
pmcid: 7157821
doi: 10.1128/mBio.00603-20
Fajardo-Lubián, A., Ben Zakour, N. L., Agyekum, A., Qi, Q. & Iredell, J. R. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog. 15, e1007218 (2019).
pubmed: 30875398
pmcid: 6436753
doi: 10.1371/journal.ppat.1007218
Wong, J. L. C. et al. OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat. Commun. 10, 3957 (2019).
pubmed: 31477712
pmcid: 6718652
doi: 10.1038/s41467-019-11756-y
Finnegan, D. & Willetts, N. The nature of the transfer inhibitor of several F-like plasmids. Mol. Gen. Genet. 119, 57–66 (1972).
pubmed: 4344325
doi: 10.1007/BF00270444
Van der Ley, P., Bekkers, A., Van Meersbergen, J. & Tommassen, J. A comparative study on the phoE genes of three enterobacterial species: implications for structure‐function relationships in a pore‐forming protein of the outer membrane. Eur. J. Biochem. 164, 469–475 (1987).
pubmed: 3032618
doi: 10.1111/j.1432-1033.1987.tb11080.x
Xiao, M., Lai, Y., Sun, J., Chen, G. & Yan, A. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli. Front. Microbiol. 7, 799 (2016).
pubmed: 27303386
pmcid: 4886647
doi: 10.3389/fmicb.2016.00799
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl. Acad. Sci. USA 118, e2008731118 (2021).
pubmed: 33526659
pmcid: 8017928
doi: 10.1073/pnas.2008731118
Gerts, E. M., Yu, Y. K., Agarwala, R., Schäffer, A. A. & Altschul, S. F. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 4, 41 (2006).
doi: 10.1186/1741-7007-4-41
Harrington, L. C. & Rogerson, A. C. The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J. Bacteriol. 172, 7263–7264 (1990).
pubmed: 1979324
pmcid: 210852
doi: 10.1128/jb.172.12.7263-7264.1990
Babić, A., Lindner, A. B., Vulić, M., Stewart, E. J. & Radman, M. Direct visualization of horizontal gene transfer. Science 319, 1533–1536 (2008).
pubmed: 18339941
doi: 10.1126/science.1153498
Llosa, M., Gomis-Rüth, F. X., Coll, M. & de la Cruz, F.Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45, 1–8 (2002).
pubmed: 12100543
doi: 10.1046/j.1365-2958.2002.03014.x
Chen, L. et al. Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York hospitals. Antimicrob. Agents Chemother. 58, 2871–2877 (2014).
pubmed: 24614371
pmcid: 3993205
doi: 10.1128/AAC.00120-14
Buckner, M. M. C. et al. Clinically relevant plasmid-host interactions indicate that transcriptional and not genomic modifications ameliorate fitness costs of Klebsiella pneumoniae carbapenemase-carrying plasmids. mBio 9, e02303–e02317 (2018).
pubmed: 29691332
pmcid: 5915730
doi: 10.1128/mBio.02303-17
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
doi: 10.1002/pro.3235
pubmed: 28710774
Miroux, B. & Walker, J. E. Overproduction of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).
pubmed: 8757792
doi: 10.1006/jmbi.1996.0399
Beis, K., Whitfield, C., Booth, I. & Naismith, J. H. Two-step purification of outer membrane proteins. Int. J. Biol. Macromol. 39, 10–14 (2006).
pubmed: 16423387
pmcid: 3314194
doi: 10.1016/j.ijbiomac.2005.12.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
pubmed: 24451623
pmcid: 3998144
doi: 10.1093/bioinformatics/btu033
Argimón, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2, e000093 (2016).
pubmed: 28348833
pmcid: 5320705