Brain lesions disrupting addiction map to a common human brain circuit.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
24
03
2021
accepted:
21
04
2022
pubmed:
14
6
2022
medline:
22
6
2022
entrez:
13
6
2022
Statut:
ppublish
Résumé
Drug addiction is a public health crisis for which new treatments are urgently needed. In rare cases, regional brain damage can lead to addiction remission. These cases may be used to identify therapeutic targets for neuromodulation. We analyzed two cohorts of patients addicted to smoking at the time of focal brain damage (cohort 1 n = 67; cohort 2 n = 62). Lesion locations were mapped to a brain atlas and the brain network functionally connected to each lesion location was computed using human connectome data (n = 1,000). Associations with addiction remission were identified. Generalizability was assessed using an independent cohort of patients with focal brain damage and alcohol addiction risk scores (n = 186). Specificity was assessed through comparison to 37 other neuropsychological variables. Lesions disrupting smoking addiction occurred in many different brain locations but were characterized by a specific pattern of brain connectivity. This pattern involved positive connectivity to the dorsal cingulate, lateral prefrontal cortex, and insula and negative connectivity to the medial prefrontal and temporal cortex. This circuit was reproducible across independent lesion cohorts, associated with reduced alcohol addiction risk, and specific to addiction metrics. Hubs that best matched the connectivity profile for addiction remission were the paracingulate gyrus, left frontal operculum, and medial fronto-polar cortex. We conclude that brain lesions disrupting addiction map to a specific human brain circuit and that hubs in this circuit provide testable targets for therapeutic neuromodulation.
Identifiants
pubmed: 35697842
doi: 10.1038/s41591-022-01834-y
pii: 10.1038/s41591-022-01834-y
pmc: PMC9205767
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1249-1255Subventions
Organisme : NIMH NIH HHS
ID : K23 MH120510
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG054328
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD105351
Pays : United States
Organisme : NIDA NIH HHS
ID : K99 DA048085
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH113929
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS123813
Pays : United States
Organisme : NIMH NIH HHS
ID : L30 MH127717
Pays : United States
Organisme : NIDA NIH HHS
ID : R00 DA048085
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH126271
Pays : United States
Organisme : NIMH NIH HHS
ID : K23 MH121657
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG069086
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS114405
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103556
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Volkow, N. D., Koob, G. F. & McLellan, A. T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med. 374, 363–371 (2016).
pubmed: 26816013
pmcid: 6135257
doi: 10.1056/NEJMra1511480
McLellan, A. T., Lewis, D. C., O’Brien, C. P. & Kleber, H. D. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. JAMA 284, 1689–1695 (2000).
pubmed: 11015800
doi: 10.1001/jama.284.13.1689
Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).
pubmed: 27475769
pmcid: 6135092
doi: 10.1016/S2215-0366(16)00104-8
Luigjes, J., Segrave, R., de Joode, N., Figee, M. & Denys, D. Efficacy of invasive and non-invasive brain modulation interventions for addiction. Neuropsychol. Rev. 29, 116–138 (2019).
pubmed: 30536145
doi: 10.1007/s11065-018-9393-5
Ekhtiari, H. et al. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci. Biobehav. Rev. 104, 118–140 (2019).
pubmed: 31271802
pmcid: 7293143
doi: 10.1016/j.neubiorev.2019.06.007
Balasubramaniam, V., Kanaka, T. S. & Ramanujam, P. B. Stereotaxic cingulumotomy for drug addiction. Neurol. India 21, 63–66 (1973).
pubmed: 4587421
Kanaka, T. S. & Balasubramaniam, V. Stereotactic cingulumotomy for drug addiction. Appl. Neurophysiol. 41, 86–92 (1978).
pubmed: 365103
Medvedev, S. V., Anichkov, A. D. & Poliakov, I. I. Physiological mechanisms of the effectiveness of bilateral stereotactic cingulotomy in treatment of strong psychological dependence in drug addiction. Fiziol. Cheloveka 29, 117–123 (2003).
pubmed: 13677207
Li, N. et al. Nucleus accumbens surgery for addiction. World Neurosurg. 80, S28.e9–S28.e19 (2013).
doi: 10.1016/j.wneu.2012.10.007
Gao, G. & Wang, X. in Neurosurgical Treatments for Psychiatric Disorders (eds Sun, B. & De Salles, A.) (Springer, 2015).
Dinur-Klein, L. et al. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol. Psychiatry 76, 742–749 (2014).
pubmed: 25038985
doi: 10.1016/j.biopsych.2014.05.020
Fiocchi, S. et al. Deep transcranial magnetic stimulation for the addiction treatment: electric field distribution modelling. IEEE J. Electromagn. RF Microw. Med. Biol. 2, 242–248 (2018).
doi: 10.1109/JERM.2018.2874528
Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007).
pubmed: 17255515
pmcid: 3698854
doi: 10.1126/science.1135926
Gaznick, N., Tranel, D., McNutt, A. & Bechara, A. Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine Tob. Res. 16, 445–453 (2014).
pubmed: 24169814
doi: 10.1093/ntr/ntt172
Abdolahi, A. et al. Smoking cessation behaviors three months following acute insular damage from stroke. Addict. Behav. 51, 24–30 (2015).
pubmed: 26188468
pmcid: 4558299
doi: 10.1016/j.addbeh.2015.07.001
Damasio, H. & Damasio, A. R. Lesion Analysis in Neuropsychology (Oxford Univ. Press, 1989).
Karnath, H.-O., Sperber, C. & Rorden, C. Mapping human brain lesions and their functional consequences. Neuroimage 165, 180–189 (2018).
pubmed: 29042216
doi: 10.1016/j.neuroimage.2017.10.028
Boes, A. D. et al. Network localization of neurological symptoms from focal brain lesions. Brain 138, 3061–3075 (2015).
pubmed: 26264514
pmcid: 4671478
doi: 10.1093/brain/awv228
Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018).
pubmed: 30575457
doi: 10.1056/NEJMra1706158
Kapur, N. Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain 119, 1775–1790 (1996).
pubmed: 8931597
doi: 10.1093/brain/119.5.1775
Joutsa, J. et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann. Neurol. 84, 153–157 (2018).
pubmed: 30014594
doi: 10.1002/ana.25285
Volkow, N. D., Wang, G.-J., Tomasi, D. & Baler, R. D. Unbalanced neuronal circuits in addiction. Curr. Opin. Neurobiol. 23, 639–648 (2013).
pubmed: 23434063
pmcid: 3717294
doi: 10.1016/j.conb.2013.01.002
Hu, Y. et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc. Natl Acad. Sci. USA 116, 9066–9071 (2019).
pubmed: 30988198
pmcid: 6500166
doi: 10.1073/pnas.1819978116
Hu, Y., Salmeron, B. J., Gu, H., Stein, E. A. & Yang, Y. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry 72, 584–592 (2015).
pubmed: 25853901
doi: 10.1001/jamapsychiatry.2015.1
Bowren, M. et al. Post-stroke cognitive and motor outcomes predicted from lesion location and lesion network mapping. Brain https://doi.org/10.1093/brain/awac010 (2022).
Horn, A. et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).
pubmed: 28586141
pmcid: 5880678
doi: 10.1002/ana.24974
Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).
pubmed: 23552889
doi: 10.1038/nature12024
Harel, M. et al. Repetitive transcranial magnetic stimulation in alcohol dependence: a randomised, double-blind, sham-controlled proof-of-concept trial targeting the medial prefrontal and anterior cingulate cortices. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2021.11.020 (2021).
Fischer, D. B. et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage 157, 34–44 (2017).
pubmed: 28572060
doi: 10.1016/j.neuroimage.2017.05.060
Dougherty, D. D. et al. Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am. J. Psychiatry 159, 269–275 (2002).
pubmed: 11823270
doi: 10.1176/appi.ajp.159.2.269
Mawlawi, O. et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. accuracy and precision of D
pubmed: 11524609
doi: 10.1097/00004647-200109000-00002
Rojkova, K. et al. Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Struct. Funct. 221, 1751–1766 (2016).
pubmed: 25682261
doi: 10.1007/s00429-015-1001-3
Foulon, C. et al. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience 7, giy004 (2018).
pmcid: 5863218
doi: 10.1093/gigascience/giy004
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).
pubmed: 24530839
doi: 10.1016/j.neuroimage.2014.01.060
Thiebaut de Schotten, M., Foulon, C. & Nachev, P. Brain disconnections link structural connectivity with function and behaviour. Nat. Commun. 11, 5094 (2020).
pubmed: 33037225
pmcid: 7547734
doi: 10.1038/s41467-020-18920-9
Karolis, V. R., Corbetta, M. & Thiebaut de Schotten, M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat. Commun. 10, 1417 (2019).
pubmed: 30926845
pmcid: 6441088
doi: 10.1038/s41467-019-09344-1
Thiebaut de Schotten, M. et al. A lateralized brain network for visuospatial attention. Nat. Neurosci. 14, 1245–1246 (2011).
pubmed: 21926985
doi: 10.1038/nn.2905
Wang, R., Benner, T., Sorensen, A. G. & Wedeen, V. J. Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. Proc. Int. Soc. Mag. Reson. Med. 15, 3720 (2007).
Thiebaut de Schotten, M. et al. Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54, 49–59 (2011).
pubmed: 20682348
doi: 10.1016/j.neuroimage.2010.07.055
Thiebaut de Schotten, M. et al. From Phineas Gage and Monsieur Leborgne to H.M.: revisiting disconnection syndromes. Cereb. Cortex 25, 4812–4827 (2015).
pubmed: 26271113
pmcid: 4635921
doi: 10.1093/cercor/bhv173
Raymont, V., Salazar, A. M., Krueger, F. & Grafman, J. “Studying injured minds”—the Vietnam head injury study and 40 years of brain injury research. Front. Neurol. 2, 15 (2011).
pubmed: 21625624
pmcid: 3093742
doi: 10.3389/fneur.2011.00015
Siddiqi, S. et al. Convergent causal mapping of neuropsychiatric symptoms using invasive brain stimulation, noninvasive brain stimulation, and lesions. Biol. Psychiatry 89, S99–S100 (2021).
doi: 10.1016/j.biopsych.2021.02.258