Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 06 2022
15 06 2022
Historique:
received:
16
02
2022
accepted:
20
05
2022
entrez:
15
6
2022
pubmed:
16
6
2022
medline:
18
6
2022
Statut:
epublish
Résumé
Insulin nanoparticles (NPs) with high loading content have found diverse applications in different dosage forms. This work aimed to evaluate the impact of freeze-drying and spray drying process on the structures of insulin-loaded chitosan nanoparticles, with or without mannitol as cryoprotectants. We also assessed the quality of these nanoparticles by redissolving them. Before dehydration, the chitosan/sodium tripolyphosphate/insulin crosslinked nanoparticles were optimized to 318 nm of particle size, 0.18 of PDI, 99.4% of entrapment efficiency, and 25.01% of loading content. After reconstitution, all nanoparticles, except the one produced by the freeze-drying method without using mannitol, maintained their spherical particle structure. The nanoparticles dehydrated by spray drying without mannitol also showed the smallest mean particle size (376 nm) and highest loading content (25.02%) with similar entrapment efficiency (98.7%) and PDI (0.20) compared to mannitol-containing nanoparticles dehydrated by either spray drying or freeze-drying techniques. The nanoparticles dried by spray drying without mannitol also resulted in the fastest release and highest cellular uptake efficacy of insulin. This work shows that spray drying can dehydrate insulin nanoparticles without the need for cryoprotectants, creating a significant advantage in terms of greater loading capacity with lower additive requirements and operating costs as compared to conventional freeze drying approaches.
Identifiants
pubmed: 35705561
doi: 10.1038/s41598-022-13092-6
pii: 10.1038/s41598-022-13092-6
pmc: PMC9200718
doi:
Substances chimiques
Cryoprotective Agents
0
Insulin
0
Mannitol
3OWL53L36A
Chitosan
9012-76-4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9949Informations de copyright
© 2022. The Author(s).
Références
Mol Pharm. 2015 Aug 3;12(8):2562-73
pubmed: 25685865
Int J Pharm. 2018 Oct 5;549(1-2):201-217
pubmed: 30071309
AAPS PharmSciTech. 2020 Mar 25;21(3):108
pubmed: 32215761
Int J Biol Macromol. 2020 May 1;150:1072-1083
pubmed: 31739057
Exp Mol Pathol. 2009 Jun;86(3):215-23
pubmed: 19186176
Br Med J. 1923 Dec 22;2(3286):1204-5
pubmed: 20771392
Colloids Surf B Biointerfaces. 2005 Aug;44(2-3):65-73
pubmed: 16024239
Eur J Pharm Biopharm. 2021 Aug;165:345-360
pubmed: 34052428
Colloids Surf B Biointerfaces. 2014 Oct 1;122:38-45
pubmed: 25016543
Int J Biol Macromol. 2018 Dec;120(Pt A):775-782
pubmed: 30170057
Mol Pharm. 2018 Oct 1;15(10):4756-4763
pubmed: 30125508
Dalton Trans. 2010 Oct 14;39(38):9140-5
pubmed: 20820603
Int J Pharm. 2014 Aug 25;471(1-2):303-11
pubmed: 24939612
Int J Pharm. 2005 Oct 13;303(1-2):171-81
pubmed: 16129575
Int J Pharm. 2018 Dec 1;552(1-2):27-38
pubmed: 30236648
Biomaterials. 2017 Jun;130:28-41
pubmed: 28359018
J Pharm Sci. 2014 Oct;103(10):3165-70
pubmed: 25139279
Food Microbiol. 2011 Oct;28(7):1359-66
pubmed: 21839386
J Mater Chem B. 2015 Aug 7;3(29):5957-5970
pubmed: 32262652
Diabetologia. 1983 Sep;25(3):209-21
pubmed: 6357909
J Biomed Mater Res. 1993 Oct;27(10):1213-24
pubmed: 8245036