Momordica charantia Extract Confers Protection Against Hypertension in Dahl Salt-Sensitive Rats.
Dahl salt-sensitive rats
Hypertension
Momordica charantia
Nitric oxide
Journal
Plant foods for human nutrition (Dordrecht, Netherlands)
ISSN: 1573-9104
Titre abrégé: Plant Foods Hum Nutr
Pays: Netherlands
ID NLM: 8803554
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
accepted:
09
05
2022
pubmed:
16
6
2022
medline:
14
9
2022
entrez:
15
6
2022
Statut:
ppublish
Résumé
Hypertension is one of the main factors of cardiovascular disease worldwide and is strongly related to the overall mortality. High salt intake is a major risk factors for hypertension. Identifying functional foods that can help prevent mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable nutraceutical and scientific interest. Dietary Momordica charantia may be an alternative approach to avoid salt-induced hypertension. Dahl salt-sensitive (DSS) rats were used to determine whether Momordica charantia water extracts (ME) exerts anti-hypertensive effects in the present study. ME gavage could significantly prevented the increase of blood pressure, blood urea nitrogen, creatinine, and urine protein-to-creatinine ratio of DSS rats. Metabolomics analysis indicated that high-salt diet induced abnormal amino acid metabolism was related to nitric oxide (NO) deficiency, but ME gavage could upregulate the activities of nitric oxide synthase, aspartate aminotransferase, argininosuccinate lyase, argininosuccinate synthase and restore endogenous synthesis of arginine and NO. Meanwhile, renal function was improved after ME gavage. Citrulline, as one of the important component in ME, could attenuate salt-induced hypertension by increasing endogenous synthesis of arginine and NO. Antioxidants in ME, such as phenolic compound, may avoid high-salt induced oxidative stress in DSS rats, which may be another mechanism by which ME prevented blood pressure increase. Thus, the present study indicated that feeding Momordica charantia could avoid high-salt-induced hypertension in DSS rats.
Identifiants
pubmed: 35705768
doi: 10.1007/s11130-022-00971-6
pii: 10.1007/s11130-022-00971-6
doi:
Substances chimiques
Sodium Chloride, Dietary
0
bitter melon extract
0
Arginine
94ZLA3W45F
Creatinine
AYI8EX34EU
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
373-382Subventions
Organisme : National Natural Science Foundation of China
ID : 82070751
Organisme : Objective-oriented Project of Xi'an Jiaotong University
ID : xzy022020038
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Mattson DL (2019) Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 15:290–300. https://doi.org/10.1038/s41581-019-0121-z
doi: 10.1038/s41581-019-0121-z
pubmed: 30804523
de Almeida SM, Mowry FE, Peaden SC, Andrade TU, Biancardi VC (2020) Kefir ameliorates hypertension via gut-brain mechanisms in spontaneously hypertensive rats. J Nutr Biochem 77:108318. https://doi.org/10.1016/j.jnutbio.2019.108318
doi: 10.1016/j.jnutbio.2019.108318
Zheng WL, Wang J, Mu JJ, Liu FQ, Yuan ZY, Wang Y et al (2016) Effects of salt intake and potassium supplementation on renalase expression in the kidneys of Dahl salt-sensitive rats. Exp Biol Med (Maywood) 241:382–386. https://doi.org/10.1177/1535370215611584
doi: 10.1177/1535370215611584
Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS (1986) Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8:II127-134. https://doi.org/10.1161/01.hyp.8.6_pt_2.ii127
doi: 10.1161/01.hyp.8.6_pt_2.ii127
pubmed: 3522418
Wang Y, Liu X, Zhang C, Wang Z (2018) High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J Nutr Biochem 56:133–141. https://doi.org/10.1016/j.jnutbio.2018.01.007
doi: 10.1016/j.jnutbio.2018.01.007
pubmed: 29567533
Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37:429–432. https://doi.org/10.1161/01.hyp.37.2.429
doi: 10.1161/01.hyp.37.2.429
pubmed: 11230313
Aljohi A, Matou-Nasri S, Ahmed N (2016) Antiglycation and antioxidant poperties of Momordica charantia. PLoS ONE 11:e0159985. https://doi.org/10.1371/journal.pone.0159985
doi: 10.1371/journal.pone.0159985
pubmed: 27513747
pmcid: 4981456
Nguyen TTT, Nguyen HVH (2020) Effects of fermentation conditions using Lactobacillus plantarum on the charantin, stigmasterol glucoside and beta-sitosterol glucoside contents of bitter gourd (Momordica charantia L.) juice. Plant Foods Hum Nutr 75:656–658. https://doi.org/10.1007/s11130-020-00860-w
doi: 10.1007/s11130-020-00860-w
pubmed: 33009632
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H et al (2021) Metabolite profile of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia) and their inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. J Agric Food Chem 69:1816–1830. https://doi.org/10.1021/acs.jafc.0c06085
doi: 10.1021/acs.jafc.0c06085
pubmed: 33406828
Shimada T, Kato F, Dwijayanti DR, Nagata T, Kinoshita A, Okuyama T et al (2021) Bitter melon fruit extract enhances intracellular ATP production and insulin secretion from rat pancreatic beta-cells. Br J Nutr 1–7. https://doi.org/10.1017/S0007114521001082
Shetty AK, Kumar GS, Sambaiah K, Salimath PV (2005) Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats. Plant Foods Hum Nutr 60:109–112. https://doi.org/10.1007/s11130-005-6837-x
doi: 10.1007/s11130-005-6837-x
pubmed: 16187012
Priyanto AD, Doerksen RJ, Chang CI, Sung WC, Widjanarko SB, Kusnadi J et al (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteomics 128:424–435. https://doi.org/10.1016/j.jprot.2015.08.018
doi: 10.1016/j.jprot.2015.08.018
pubmed: 26344130
Shodehinde SA, Adefegha SA, Oboh G, Oyeleye SI, Olasehinde TA, Nwanna EE et al (2016) Phenolic composition and evaluation of methanol and aqueous extracts of bitter gourd (Momordica charantia L) leaves on angiotensin-I-converting enzyme and some pro-oxidant-induced lipid peroxidation in vitro. J Evid Based Complementary Altern Med 21:NP67–NP76. https://doi.org/10.1177/2156587216636505
doi: 10.1177/2156587216636505
pubmed: 26961486
Yang P, Zhao X, Zhou L, Jin Y, Zheng X, Ouyang Y et al (2021) Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet. Life Sci 270:119134. https://doi.org/10.1016/j.lfs.2021.119134
doi: 10.1016/j.lfs.2021.119134
pubmed: 33513395
Hou E, Sun N, Zhang F, Zhao C, Usa K, Liang M et al (2017) Malate and aspartate increase L-arginine and nitric oxide and attenuate hypertension. Cell Rep 19:1631–1639. https://doi.org/10.1016/j.celrep.2017.04.071
doi: 10.1016/j.celrep.2017.04.071
pubmed: 28538181
Rashid J, Kumar SS, Job KM, Liu X, Fike CD, Sherwin CMT (2020) Therapeutic potential of citrulline as an arginine supplement: a clinical pharmacology review. Paediatr Drugs 22:279–293. https://doi.org/10.1007/s40272-020-00384-5
doi: 10.1007/s40272-020-00384-5
pubmed: 32140997
pmcid: 7274894
Tian Z, Liang M (2021) Renal metabolism and hypertension. Nat Commun 12:963. https://doi.org/10.1038/s41467-021-21301-5
doi: 10.1038/s41467-021-21301-5
pubmed: 33574248
pmcid: 7878744
Stamler J, Brown IJ, Daviglus ML, Chan Q, Kesteloot H, Ueshima H et al (2009) Glutamic acid, the main dietary amino acid, and blood pressure: the INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure). Circulation 120:221–228. https://doi.org/10.1161/CIRCULATIONAHA.108.839241
doi: 10.1161/CIRCULATIONAHA.108.839241
pubmed: 19581495
pmcid: 4048930
Deng Y, Tang Q, Zhang Y, Zhang R, Wei Z, Tang X et al (2017) Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism. Food Nutr Res 61:1348864. https://doi.org/10.1080/16546628.2017.1348864
doi: 10.1080/16546628.2017.1348864
pubmed: 28747868
pmcid: 5510204
Zeng L, Liu Z, Zhou L, Chen M, Zheng X, Yang P et al (2022) Effects of almonds on ameliorating salt-induced hypertension in dahl salt-sensitive rats. J Sci Food Agric 102:2710–2722. https://doi.org/10.1002/jsfa.11611
doi: 10.1002/jsfa.11611
pubmed: 34708426
Wu H, Cui Y, He C, Gao P, Li Q, Zhang H et al (2020) Activation of the bitter taste sensor TRPM5 prevents high salt-induced cardiovascular dysfunction. Sci China Life Sci 63:1665–1677. https://doi.org/10.1007/s11427-019-1649-9
doi: 10.1007/s11427-019-1649-9
pubmed: 32303962
Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol 294:F1-9. https://doi.org/10.1152/ajprenal.00424.2007
doi: 10.1152/ajprenal.00424.2007
pubmed: 17928410
Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 88:10045–10048. https://doi.org/10.1073/pnas.88.22.10045
doi: 10.1073/pnas.88.22.10045
pubmed: 1658794
pmcid: 52864
Hani NM, Torkamani AE, Zainul Abidin S, Mahmood WAK, Juliano P (2017) The effects of ultrasound assisted extraction on antioxidative activity of polyphenolics obtained from Momordica charantia fruit using response surface approach. Food Biosci 17:7–16. https://doi.org/10.1016/j.fbio.2016.11.002
doi: 10.1016/j.fbio.2016.11.002
Pinheiro LC, Tanus-Santos JE, Castro MM (2017) The potential of stimulating nitric oxide formation in the treatment of hypertension. Expert Opin Ther Targets 21:543–556. https://doi.org/10.1080/14728222.2017.1310840
doi: 10.1080/14728222.2017.1310840
pubmed: 28338370
Yuwai KE, Rao KS, Kaluwin C, Jones GP, Rivett DE (1991) Chemical composition of Momordica charantia L. fruits. J Agric Food Chem 39:1762–1763. https://doi.org/10.1021/jf00010a013
doi: 10.1021/jf00010a013
Lee YR (2016) Nutritional components and antioxidant activity of dry bitter melon (Momordica charantia L). J Korean Soc Food Sci Nutr 45:518–523. https://doi.org/10.3746/jkfn.2016.45.4.518
doi: 10.3746/jkfn.2016.45.4.518
Tsuboi T, Maeda M, Hayashi T (2018) Administration of L-arginine plus L-citrulline or L-citrulline alone successfully retarded endothelial senescence. PLoS ONE 13:e0192252. https://doi.org/10.1371/journal.pone.0192252
doi: 10.1371/journal.pone.0192252
pubmed: 29415069
pmcid: 5802914