Momordica charantia Extract Confers Protection Against Hypertension in Dahl Salt-Sensitive Rats.


Journal

Plant foods for human nutrition (Dordrecht, Netherlands)
ISSN: 1573-9104
Titre abrégé: Plant Foods Hum Nutr
Pays: Netherlands
ID NLM: 8803554

Informations de publication

Date de publication:
Sep 2022
Historique:
accepted: 09 05 2022
pubmed: 16 6 2022
medline: 14 9 2022
entrez: 15 6 2022
Statut: ppublish

Résumé

Hypertension is one of the main factors of cardiovascular disease worldwide and is strongly related to the overall mortality. High salt intake is a major risk factors for hypertension. Identifying functional foods that can help prevent mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable nutraceutical and scientific interest. Dietary Momordica charantia may be an alternative approach to avoid salt-induced hypertension. Dahl salt-sensitive (DSS) rats were used to determine whether Momordica charantia water extracts (ME) exerts anti-hypertensive effects in the present study. ME gavage could significantly prevented the increase of blood pressure, blood urea nitrogen, creatinine, and urine protein-to-creatinine ratio of DSS rats. Metabolomics analysis indicated that high-salt diet induced abnormal amino acid metabolism was related to nitric oxide (NO) deficiency, but ME gavage could upregulate the activities of nitric oxide synthase, aspartate aminotransferase, argininosuccinate lyase, argininosuccinate synthase and restore endogenous synthesis of arginine and NO. Meanwhile, renal function was improved after ME gavage. Citrulline, as one of the important component in ME, could attenuate salt-induced hypertension by increasing endogenous synthesis of arginine and NO. Antioxidants in ME, such as phenolic compound, may avoid high-salt induced oxidative stress in DSS rats, which may be another mechanism by which ME prevented blood pressure increase. Thus, the present study indicated that feeding Momordica charantia could avoid high-salt-induced hypertension in DSS rats.

Identifiants

pubmed: 35705768
doi: 10.1007/s11130-022-00971-6
pii: 10.1007/s11130-022-00971-6
doi:

Substances chimiques

Sodium Chloride, Dietary 0
bitter melon extract 0
Arginine 94ZLA3W45F
Creatinine AYI8EX34EU

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

373-382

Subventions

Organisme : National Natural Science Foundation of China
ID : 82070751
Organisme : Objective-oriented Project of Xi'an Jiaotong University
ID : xzy022020038

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Mattson DL (2019) Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 15:290–300. https://doi.org/10.1038/s41581-019-0121-z
doi: 10.1038/s41581-019-0121-z pubmed: 30804523
de Almeida SM, Mowry FE, Peaden SC, Andrade TU, Biancardi VC (2020) Kefir ameliorates hypertension via gut-brain mechanisms in spontaneously hypertensive rats. J Nutr Biochem 77:108318. https://doi.org/10.1016/j.jnutbio.2019.108318
doi: 10.1016/j.jnutbio.2019.108318
Zheng WL, Wang J, Mu JJ, Liu FQ, Yuan ZY, Wang Y et al (2016) Effects of salt intake and potassium supplementation on renalase expression in the kidneys of Dahl salt-sensitive rats. Exp Biol Med (Maywood) 241:382–386. https://doi.org/10.1177/1535370215611584
doi: 10.1177/1535370215611584
Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS (1986) Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8:II127-134. https://doi.org/10.1161/01.hyp.8.6_pt_2.ii127
doi: 10.1161/01.hyp.8.6_pt_2.ii127 pubmed: 3522418
Wang Y, Liu X, Zhang C, Wang Z (2018) High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J Nutr Biochem 56:133–141. https://doi.org/10.1016/j.jnutbio.2018.01.007
doi: 10.1016/j.jnutbio.2018.01.007 pubmed: 29567533
Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37:429–432. https://doi.org/10.1161/01.hyp.37.2.429
doi: 10.1161/01.hyp.37.2.429 pubmed: 11230313
Aljohi A, Matou-Nasri S, Ahmed N (2016) Antiglycation and antioxidant poperties of Momordica charantia. PLoS ONE 11:e0159985. https://doi.org/10.1371/journal.pone.0159985
doi: 10.1371/journal.pone.0159985 pubmed: 27513747 pmcid: 4981456
Nguyen TTT, Nguyen HVH (2020) Effects of fermentation conditions using Lactobacillus plantarum on the charantin, stigmasterol glucoside and beta-sitosterol glucoside contents of bitter gourd (Momordica charantia L.) juice. Plant Foods Hum Nutr 75:656–658. https://doi.org/10.1007/s11130-020-00860-w
doi: 10.1007/s11130-020-00860-w pubmed: 33009632
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H et al (2021) Metabolite profile of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia) and their inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. J Agric Food Chem 69:1816–1830. https://doi.org/10.1021/acs.jafc.0c06085
doi: 10.1021/acs.jafc.0c06085 pubmed: 33406828
Shimada T, Kato F, Dwijayanti DR, Nagata T, Kinoshita A, Okuyama T et al (2021) Bitter melon fruit extract enhances intracellular ATP production and insulin secretion from rat pancreatic beta-cells. Br J Nutr 1–7. https://doi.org/10.1017/S0007114521001082
Shetty AK, Kumar GS, Sambaiah K, Salimath PV (2005) Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats. Plant Foods Hum Nutr 60:109–112. https://doi.org/10.1007/s11130-005-6837-x
doi: 10.1007/s11130-005-6837-x pubmed: 16187012
Priyanto AD, Doerksen RJ, Chang CI, Sung WC, Widjanarko SB, Kusnadi J et al (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteomics 128:424–435. https://doi.org/10.1016/j.jprot.2015.08.018
doi: 10.1016/j.jprot.2015.08.018 pubmed: 26344130
Shodehinde SA, Adefegha SA, Oboh G, Oyeleye SI, Olasehinde TA, Nwanna EE et al (2016) Phenolic composition and evaluation of methanol and aqueous extracts of bitter gourd (Momordica charantia L) leaves on angiotensin-I-converting enzyme and some pro-oxidant-induced lipid peroxidation in vitro. J Evid Based Complementary Altern Med 21:NP67–NP76. https://doi.org/10.1177/2156587216636505
doi: 10.1177/2156587216636505 pubmed: 26961486
Yang P, Zhao X, Zhou L, Jin Y, Zheng X, Ouyang Y et al (2021) Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet. Life Sci 270:119134. https://doi.org/10.1016/j.lfs.2021.119134
doi: 10.1016/j.lfs.2021.119134 pubmed: 33513395
Hou E, Sun N, Zhang F, Zhao C, Usa K, Liang M et al (2017) Malate and aspartate increase L-arginine and nitric oxide and attenuate hypertension. Cell Rep 19:1631–1639. https://doi.org/10.1016/j.celrep.2017.04.071
doi: 10.1016/j.celrep.2017.04.071 pubmed: 28538181
Rashid J, Kumar SS, Job KM, Liu X, Fike CD, Sherwin CMT (2020) Therapeutic potential of citrulline as an arginine supplement: a clinical pharmacology review. Paediatr Drugs 22:279–293. https://doi.org/10.1007/s40272-020-00384-5
doi: 10.1007/s40272-020-00384-5 pubmed: 32140997 pmcid: 7274894
Tian Z, Liang M (2021) Renal metabolism and hypertension. Nat Commun 12:963. https://doi.org/10.1038/s41467-021-21301-5
doi: 10.1038/s41467-021-21301-5 pubmed: 33574248 pmcid: 7878744
Stamler J, Brown IJ, Daviglus ML, Chan Q, Kesteloot H, Ueshima H et al (2009) Glutamic acid, the main dietary amino acid, and blood pressure: the INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure). Circulation 120:221–228. https://doi.org/10.1161/CIRCULATIONAHA.108.839241
doi: 10.1161/CIRCULATIONAHA.108.839241 pubmed: 19581495 pmcid: 4048930
Deng Y, Tang Q, Zhang Y, Zhang R, Wei Z, Tang X et al (2017) Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism. Food Nutr Res 61:1348864. https://doi.org/10.1080/16546628.2017.1348864
doi: 10.1080/16546628.2017.1348864 pubmed: 28747868 pmcid: 5510204
Zeng L, Liu Z, Zhou L, Chen M, Zheng X, Yang P et al (2022) Effects of almonds on ameliorating salt-induced hypertension in dahl salt-sensitive rats. J Sci Food Agric 102:2710–2722. https://doi.org/10.1002/jsfa.11611
doi: 10.1002/jsfa.11611 pubmed: 34708426
Wu H, Cui Y, He C, Gao P, Li Q, Zhang H et al (2020) Activation of the bitter taste sensor TRPM5 prevents high salt-induced cardiovascular dysfunction. Sci China Life Sci 63:1665–1677. https://doi.org/10.1007/s11427-019-1649-9
doi: 10.1007/s11427-019-1649-9 pubmed: 32303962
Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol 294:F1-9. https://doi.org/10.1152/ajprenal.00424.2007
doi: 10.1152/ajprenal.00424.2007 pubmed: 17928410
Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 88:10045–10048. https://doi.org/10.1073/pnas.88.22.10045
doi: 10.1073/pnas.88.22.10045 pubmed: 1658794 pmcid: 52864
Hani NM, Torkamani AE, Zainul Abidin S, Mahmood WAK, Juliano P (2017) The effects of ultrasound assisted extraction on antioxidative activity of polyphenolics obtained from Momordica charantia fruit using response surface approach. Food Biosci 17:7–16. https://doi.org/10.1016/j.fbio.2016.11.002
doi: 10.1016/j.fbio.2016.11.002
Pinheiro LC, Tanus-Santos JE, Castro MM (2017) The potential of stimulating nitric oxide formation in the treatment of hypertension. Expert Opin Ther Targets 21:543–556. https://doi.org/10.1080/14728222.2017.1310840
doi: 10.1080/14728222.2017.1310840 pubmed: 28338370
Yuwai KE, Rao KS, Kaluwin C, Jones GP, Rivett DE (1991) Chemical composition of Momordica charantia L. fruits. J Agric Food Chem 39:1762–1763. https://doi.org/10.1021/jf00010a013
doi: 10.1021/jf00010a013
Lee YR (2016) Nutritional components and antioxidant activity of dry bitter melon (Momordica charantia L). J Korean Soc Food Sci Nutr 45:518–523. https://doi.org/10.3746/jkfn.2016.45.4.518
doi: 10.3746/jkfn.2016.45.4.518
Tsuboi T, Maeda M, Hayashi T (2018) Administration of L-arginine plus L-citrulline or L-citrulline alone successfully retarded endothelial senescence. PLoS ONE 13:e0192252. https://doi.org/10.1371/journal.pone.0192252
doi: 10.1371/journal.pone.0192252 pubmed: 29415069 pmcid: 5802914

Auteurs

Li Zeng (L)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Meng Chen (M)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Hussain Ahmad (H)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Xuewei Zheng (X)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Yanan Ouyang (Y)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Pengfei Yang (P)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Zhe Yang (Z)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Di Gao (D)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Zhongmin Tian (Z)

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China. zmtian@mail.xjtu.edu.cn.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH