Centriole distal-end proteins CP110 and Cep97 influence centriole cartwheel growth at the proximal end.
CP110
Cell cycle
Centriole
Centrosome
Cep97
Embryogenesis
Organelle biogenesis
Polo-like kinase 4
Journal
Journal of cell science
ISSN: 1477-9137
Titre abrégé: J Cell Sci
Pays: England
ID NLM: 0052457
Informations de publication
Date de publication:
15 07 2022
15 07 2022
Historique:
received:
14
03
2022
accepted:
13
06
2022
pubmed:
17
6
2022
medline:
22
7
2022
entrez:
16
6
2022
Statut:
ppublish
Résumé
Centrioles are composed of a central cartwheel tethered to nine-fold symmetric microtubule (MT) blades. The centriole cartwheel and MTs are thought to grow from opposite ends of these organelles, so it is unclear how they coordinate their assembly. We previously showed that in Drosophila embryos an oscillation of Polo-like kinase 4 (Plk4) helps to initiate and time the growth of the cartwheel at the proximal end. Here, in the same model, we show that CP110 and Cep97 form a complex close to the distal-end of the centriole MTs whose levels rise and fall as the new centriole MTs grow, in a manner that appears to be entrained by the core cyclin-dependent kinase (Cdk)-Cyclin oscillator that drives the nuclear divisions in these embryos. These CP110 and Cep97 dynamics, however, do not appear to time the period of centriole MT growth directly. Instead, we find that changing the levels of CP110 and Cep97 appears to alter the Plk4 oscillation and the growth of the cartwheel at the proximal end. These findings reveal an unexpected potential crosstalk between factors normally concentrated at opposite ends of the growing centrioles, which might help to coordinate centriole growth. This article has an associated First Person interview with the first authors of the paper.
Identifiants
pubmed: 35707992
pii: 275722
doi: 10.1242/jcs.260015
pmc: PMC9450887
pii:
doi:
Substances chimiques
Cell Cycle Proteins
0
Microtubule-Associated Proteins
0
Phosphoproteins
0
PLK4 protein, human
EC 2.7.1.-
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : University of California, San Francisco
ID : 2017078
Organisme : Wellcome Trust
ID : 104575
Pays : United Kingdom
Organisme : Edward Penley Abraham Scholarship
Organisme : Sandler Foundation
ID : 7029760
Organisme : Ludwig Institute for Cancer Research
Organisme : University of Oxford
Informations de copyright
© 2022. Published by The Company of Biologists Ltd.
Déclaration de conflit d'intérêts
Competing interests Laura Hankins is currently an employee of The Company of Biologists and had no role in the review of the paper. The authors declare no other competing interests for this study.
Références
Methods. 2017 Feb 15;115:80-90
pubmed: 27713081
Curr Biol. 2009 Jun 23;19(12):1005-11
pubmed: 19481458
Elife. 2014 Jun 10;3:e02678
pubmed: 24916159
J Cell Biol. 2013 Dec 9;203(5):785-99
pubmed: 24297749
Curr Biol. 2009 Jun 23;19(12):1012-8
pubmed: 19481460
Curr Biol. 2017 Oct 9;27(19):R1054-R1055
pubmed: 29017036
J Cell Sci. 2016 Jul 1;129(13):2514-25
pubmed: 27206860
Cell. 2007 Aug 24;130(4):678-90
pubmed: 17719545
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 5;369(1650):
pubmed: 25047614
EMBO J. 2013 Apr 17;32(8):1141-54
pubmed: 23511974
Cell Cycle. 2017 Jun 18;16(12):1225-1234
pubmed: 28562169
Dev Cell. 2016 May 23;37(4):362-376
pubmed: 27219064
J Cell Biol. 2018 Apr 2;217(4):1233-1248
pubmed: 29500190
Curr Biol. 2020 Aug 3;30(15):3045-3056.e7
pubmed: 32589908
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 5;369(1650):
pubmed: 25047611
Curr Biol. 2015 Oct 5;25(19):2591-6
pubmed: 26412126
Curr Opin Struct Biol. 2021 Feb;66:89-95
pubmed: 33220554
Biology (Basel). 2021 Jun 09;10(6):
pubmed: 34207742
Dev Cell. 2007 Aug;13(2):190-202
pubmed: 17681131
Nat Commun. 2018 May 22;9(1):2023
pubmed: 29789620
J Cell Sci. 2021 Jul 15;134(14):
pubmed: 34156068
J Cell Biol. 2018 Apr 2;217(4):1169-1171
pubmed: 29519803
EMBO J. 2022 Jun 1;41(11):e110891
pubmed: 35505659
Dev Cell. 2016 Aug 22;38(4):399-412
pubmed: 27554859
J Cell Sci. 2016 Jul 1;129(13):2501-13
pubmed: 27185865
Sci Adv. 2020 Feb 14;6(7):eaaz4137
pubmed: 32110738
Elife. 2019 Sep 09;8:
pubmed: 31498081
Biochem Soc Trans. 2016 Oct 15;44(5):1253-1263
pubmed: 27911707
Bioinformatics. 2016 Mar 15;32(6):958-60
pubmed: 26589275
Cell. 2020 Jun 25;181(7):1566-1581.e27
pubmed: 32531200
Curr Biol. 2014 Jun 2;24(11):1276-82
pubmed: 24835456
J Cell Biol. 2020 Jun 1;219(6):
pubmed: 32271878
Annu Rev Cell Dev Biol. 2017 Oct 6;33:23-49
pubmed: 28813178
Annu Rev Genet. 2014;48:269-94
pubmed: 25195504
Annu Rev Biochem. 2019 Jun 20;88:691-724
pubmed: 30601682
Development. 2016 May 1;143(9):1491-501
pubmed: 26965371
Cell. 2008 Jun 13;133(6):1032-42
pubmed: 18555779
Curr Biol. 2013 Sep 9;23(17):1620-8
pubmed: 23932403
PLoS Biol. 2008 Sep 16;6(9):e224
pubmed: 18798690
Curr Biol. 2012 Mar 20;22(6):502-9
pubmed: 22365849
Dev Cell. 2002 Sep;3(3):339-50
pubmed: 12361598
Nat Commun. 2016 Jun 16;7:11874
pubmed: 27306797
Science. 2018 Apr 20;360(6386):
pubmed: 29674564