The optimized biocatalytic synthesis of (S)-methyl 2-chlorobutanoate by Acinetobacter sp. lipase.

(S)-methyl 2-chlorobutanoate biocatalysis ester enantioselectivity levetiracetam lipase

Journal

Chirality
ISSN: 1520-636X
Titre abrégé: Chirality
Pays: United States
ID NLM: 8914261

Informations de publication

Date de publication:
09 2022
Historique:
revised: 03 03 2022
received: 16 12 2021
accepted: 23 05 2022
pubmed: 18 6 2022
medline: 13 8 2022
entrez: 17 6 2022
Statut: ppublish

Résumé

Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, leading to transient brain dysfunction. Levetiracetam, developed by the UCB company in Belgium, is an effective drug for the treatment of epilepsy. (S)-Methyl 2-chlorobutanoate is an important chiral building block of levetiracetam, which has attracted a great deal of attention. In this study, a strain of lipase-produced Acinetobacter sp. zjutfet-1 was screened from soil samples. At optimized conditions for fermentation and biocatalysis, the bacterial lipase exhibited high catalytic activity for hydrolysis and stereoselectivity toward racemic methyl 2-chlorobutanoate. When the enzymatic reaction was carried out in 6% of racemic substrate, the enantiomeric excess (e.e.

Identifiants

pubmed: 35713364
doi: 10.1002/chir.23482
doi:

Substances chimiques

Levetiracetam 44YRR34555
Lipase EC 3.1.1.3

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1228-1238

Subventions

Organisme : Key Research and Development Programs of Zhejiang Province
ID : 2019C02088
Organisme : National Natural Science Foundation of China
ID : 31601390

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Achar A, Ghosh C. Multiple hurdle mechanism and blood-brain barrier in epilepsy: glucocorticoid receptor-heat shock proteins on drug regulation. Neural Regen Res. 2021;16(12):2427-2428. doi:10.4103/1673-5374.313046
Gower AJ, Noyer M, Verloes R, Gobert J, Wülfert E. ucb L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur J Pharmacol. 1992;222(2-3):193-203. doi:10.1016/0014-2999(92)90855-X
Klitgaard H. Levetiracetam: the preclinical profile of a new class of antiepileptic drugs? Epilepsia. 2001;42(Suppl 4):13-18. doi:10.1046/j.1528-1157.2001.00003.x
De Smedt T, Raedt R, Vonck K, Boon P. Levetiracetam: part II, the clinical profile of a novel anticonvulsant drug. CNS Drug Rev. 2007;13(1):57-78. doi:10.1111/j.1527-3458.2007.00005.x
Boschi F, Camps P, Comes-Franchini M, Muñoz-Torrero D, Ricci A, Sánchez L. A synthesis of levetiracetam based on (S)-N-phenylpantolactam as a chiral auxiliary. Tetrahedron: Asymmetry. 2005;16(22):3739-3745. doi:10.1016/j.tetasy.2005.10.014
UCB. Integrated annual report 2020, 2020. UCB. Accessed February 10, 2022. https://www.ucb.com/_up/ucb_com_ir/documents/2020%20integrated%20annual%20report%20-%20ENG.pdf
Lee T, Warrick BJ, Sarangarm P, et al. Levetiracetam in toxic seizures. Clin Toxicol. 2018;56(3):175-181. doi:10.1080/15563650.2017.1355056
Grinspan ZM, Shellhaas RA, Coryell J, et al. Comparative effectiveness of levetiracetam vs phenobarbital for infantile epilepsy. JAMA Pediatr. 2018;172(4):352-360. doi:10.1001/jamapediatrics.2017.5211
Cook R, Davidson P, Martin R, Ctr ND. Levetiracetam is a useful alternative to phenytoin for epileptic seizures in children. BMJ-Brit Med J. 2019;367:l5464 doi:10.1136/bmj.l5464
Giraldes de Manreza ML, Pan TA, Carbone EQ, et al. Efficacy and safety of levetiracetam as adjunctive therapy for refractory focal epilepsy. Arq Neuro-Psiquiat. 2021;79(4):290-298. doi:10.1590/0004-282x-anp-2020-0082
Chen D, Bian H, Zhang L. A meta-analysis of levetiracetam for randomized placebo-controlled trials in patients with refractory epilepsy. Neuropsychiatr Dis Treat. 2019;15:905-917. doi:10.2147/NDT.S188111
Futagawa T, Canvat JP, Cavoy E, Deleers M, Hamen De M, Zimmermann V US, assignee. Process for the preparation of levetiracetam. US patent 20100076204 A1. 2000.
Friedfeld MR, Zhong HY, Ruck RT, Shevlin M, Chirik PJ. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science. 2018;360(6391):888-893. doi:10.1126/science.aar6117
Kotkar SP, Sudalai A. A short enantioselective synthesis of the antiepileptic agent, levetiracetam based on proline-catalyzed asymmetric α-aminooxylation. Tetrahedron Lett. 2006;47(38):6813-6815. doi:10.1016/j.tetlet.2006.07.061
Imahori T, Omoto K, Hirose Y, Takahata H. Asymmetric synthesis of the antiepileptic drug levetiracetam. Heterocycles. 2008;76(2):1627-1632. doi:10.3987/COM-08-S(N)106
Patel RN. Biocatalysis: synthesis of key intermediates for development of pharmaceuticals. ACS Catal. 2011;1(9):1056-1074. doi:10.1021/cs200219b
Tokunaga E, Yamamoto T, Ito E, Shibata N. Understanding the thalidomide chirality in biological processes by the self-disproportionation of enantiomers. Sci Rep. 2018;8(1):17131-17137. doi:10.1038/s41598-018-35457-6
Abram M, Jakubiec M, Kamiński K. Chirality as an important factor for the development of new antiepileptic drugs. ChemMedChem. 2019;14(20):1744-1761. doi:10.1002/cmdc.201900367
Wohlgemuth R. Asymmetric biocatalysis with microbial enzymes and cells. Curr Opin Microbiol. 2010;13(3):283-292. doi:10.1016/j.mib.2010.04.001
Tang XL, Lu XF, Wu ZM, Zheng RC, Zheng YG. Biocatalytic production of (S)-2-aminobutanamide by a novel D-aminopeptidase from Brucella sp. with high activity and enantioselectivity. J Biotechnol. 2017;266(20):20-26.
Zheng RC, She Y, Zheng YG. Amidase-catalyzed enantioselective synthesis of chiral intermediate of levetiracetam (S)-2-aminobutyramide. Bull Ferment Sci Technol. 2015;44(03):1-5.
Weber N, Hatsch A, Labagnere L, Heider H. Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16(1):1-17. doi:10.1186/s12934-017-0667-z
Brenna E, Gatti FG, Manfredi A, Monti D, Parmeggiani F. Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Org Process Res Dev. 2012;16(2):262-268. doi:10.1021/op200086t
Pan H, Xiao Y, Zhang W, Wang P; Method for synthesizing levetiracetam. Patent WO2019028666. February 14, 2019.
Pan H, Gong Y, Zhu K, Xiao Y, Zhang W, Wang P; Method for preparing levetiracetam. Patent WO2019028671. February 14, 2019.
Dodson GG, Lawson DM, Winkler FK. Structural and evolutionary relationships in lipase mechanism and activation. Faraday Discuss. 1992;93(93):95-105. doi:10.1039/fd9929300095
Bhardwaj KK, Gupta R. Synthesis of chirally pure enantiomers by lipase. J Oleo Sci. 2017;66(10):1073-1084. doi:10.5650/jos.ess17114
Muralidhar RV, Chirumamilla RR, Marchant R, Ramachandran VN, Ward OP, Nigam P. Understanding lipase stereoselectivity. World J Microbiol Biotechnol. 2002;18(2):81-97. doi:10.1023/A:1014417223956
Acikel U, Ersan M, Acikel YS. The effects of the composition of growth medium and fermentation conditions on the production of lipase by R. delemar. Turk J Biol. 2011;35(1):35-44.
Rodriguez JA, Mateos JC, Nungaray J, et al. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem (1991). 2006;41(11):2264-2269. doi:10.1016/j.procbio.2006.05.017
Elibol M, Özer D. Lipase production by immobilised Rhizopus arrhizus. Process Biochem (1991). 2000;36(3):219-223. doi:10.1016/S0032-9592(00)00191-6
Ghribi D, Sayari A, Gargouri Y, Bezzine S. Improvement of Staphylococcus xylosus lipase production through optimization of the culture conditions. Eur J Lipid Sci Technol. 2009;111(10):967-971. doi:10.1002/ejlt.200900004
Klibanov AM. Improving enzymes by using them in organic solvents. Nature. 2001;409(6817):241-246. doi:10.1038/35051719
Smith ME, Banerjee S, Shi Y, Schmidt M, Bornscheuer UT, Masterson DS. Investigation of the cosolvent effect on six isoenzymes of PLE in the enantioselective hydrolysis of selected α, α-disubstituted malonate esters. ChemCatChem. 2012;4(4):472-475. doi:10.1002/cctc.201100490
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol. 2017;5:16. doi:10.3389/fbioe.2017.00016
Derewenda U, Swenson L, Wei Y, et al. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res. 1994;35(3):524-534. doi:10.1016/S0022-2275(20)41203-9
Lopez-Fernandez J, Dolors Benaiges M, Valero F. Rhizopus oryzae lipase, a promising industrial enzyme: biochemical characteristics, production and biocatalytic applications. Catalysts. 2020;10(11):1277-1326. doi:10.3390/catal10111277
Okamoto T, Yasuhito E, Ueji S. Metal ions dramatically enhance the enantioselectivity for lipase-catalysed reactions in organic solvents. Org Biomol Chem. 2006;4(6):1147-1153. doi:10.1039/b514885e
Lu JK, Wang P, Ke ZD, Liu X, Kang QZ, Hao LM. Effect of metal ions on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp. 99-125. Int J Biol Macromol. 2018;114(15):922-928. doi:10.1016/j.ijbiomac.2018.03.168
Wu P, Zhang MJ, Zhang YJ, Wang Z, Zheng JY. A novel lipase from Aspergillus oryzae catalyzed resolution of (R, S)-ethyl 2-bromoisovalerate. Chirality. 2020;32(2):231-238. doi:10.1002/chir.23160
Al-Zuhair S. The effect of substrate concentrations on the production of biodiesel by lipase-catalysed transesterification of vegetable oils. J Chem Technol Biot (1986). 2006;81(3):299-305. doi:10.1002/jctb.1392
Zheng GW, Pan J, Yu HL, Ngo Thi MT, Li CX, Xu JH. An efficient bioprocess for enzymatic production of l-menthol with high ratio of substrate to catalyst using whole cells of recombinant E. coli. J Biotechnol. 2010;150(1):108-114. doi:10.1016/j.jbiotec.2010.07.007

Auteurs

Yuele Lu (Y)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Rong Zhan (R)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Beibei Song (B)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Yaoyao Zhou (Y)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Linjiang Zhu (L)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Hanchi Chen (H)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Xiaolong Chen (X)

Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

Articles similaires

Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Substrate Specificity Peptides Catalysis Hydrolysis Protein Conformation
Lignin Biofuels Biomass Bacteria Fermentation
Xylitol Zea mays Polysaccharides Xylose Candida tropicalis

Classifications MeSH