Co-substrate model development and validation on pure sugars and corncob hemicellulosic hydrolysate for xylitol production.
Candida tropicalis
Co-substrate cultivation
Hemicellulosic hydrolysate
Model development
Xylitol production
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 10 2024
29 10 2024
Historique:
received:
30
07
2024
accepted:
22
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
A co-substrate model of Candida tropicalis TISTR 5306 cultivated in 10 - 100 g/L xylose and 1 - 10 g/L glucose at the ratio of 10:1 was developed based in part on modified Monod equation. The kinetic parameters include substrate limitation as well as substrate and product inhibitions with inclusion of threshold values. A general good fitting with average RSS
Identifiants
pubmed: 39472548
doi: 10.1038/s41598-024-77462-y
pii: 10.1038/s41598-024-77462-y
doi:
Substances chimiques
Xylitol
VCQ006KQ1E
hemicellulose
8024-50-8
Polysaccharides
0
Xylose
A1TA934AKO
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25928Subventions
Organisme : PhD's Degree Program in Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, under the CMU Presidential Scholarship.
ID : Juan feng(641355807)
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
ID : CoE/RG66/67-P001
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Science Research and Innovation
ID : FRB660046/0162, MHESI6309.FB2.1/707/2566
Organisme : Thailand Research Fund (TRF) Research Team Promotion Grant, RTA
ID : N42A671052
Organisme : Thailand Research Fund (TRF) Research Team Promotion Grant, RTA
ID : N42A671052
Organisme : CMU Proactive Researcher (Master Degree) Project
ID : C9CD71-155-387
Organisme : CMU Proactive Researcher (Master Degree) Project
ID : C9CD71-155-387
Informations de copyright
© 2024. The Author(s).
Références
Witkowski, M. et al. Xylitol is prothrombotic and associated with cardiovascular risk. Eur. Heart J., ehae244 (2024).
Custom Market Insights (2024). Global Xylitol Market 2024 – 2032. Retrieved from https://www.gminsights.com/industry-analysis/xylitol-market
Narisetty, V. et al. High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresour. Technol. 342, 126005 (2021).
doi: 10.1016/j.biortech.2021.126005
pubmed: 34592613
pmcid: 8651628
Feng, J. et al. Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. Bioresour. Technol., 129926 (2023).
Kumar, V., Binod, P., Sindhu, R., Gnansounou, E. & Ahluwalia, V. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Bioresour. Technol. 269, 443–451 (2018).
doi: 10.1016/j.biortech.2018.08.042
pubmed: 30217725
Narisetty, V. et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain. Energy Fuels 6, 29–65 (2022).
doi: 10.1039/D1SE00927C
Zhang, B. et al. High temperature xylitol production through simultaneous co-utilization of glucose and xylose by engineered Kluyveromyces marxianus. Biochem. Eng. J. 165, 107820 (2021).
doi: 10.1016/j.bej.2020.107820
Tochampa, W. et al. A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst. Eng. 28, 175–183 (2005).
doi: 10.1007/s00449-005-0025-0
pubmed: 16215727
Wannawilai, S., Lee, W.-C., Chisti, Y. & Sirisansaneeyakul, S. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. J. Biotechnol. 241, 147–157 (2017).
doi: 10.1016/j.jbiotec.2016.11.022
pubmed: 27899337
Tavares, J. M., Duarte, L. C., Amaral-Collaço, M. & Gı́rio, F. M. The influence of hexoses addition on the fermentation of D-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme Microb. Technol. 26, 743–747 (2000).
doi: 10.1016/S0141-0229(00)00166-6
pubmed: 10862880
Sundar, M. L. & Nampoothiri, K. M. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. Bioresour. Technol. 345, 126548 (2022).
doi: 10.1016/j.biortech.2021.126548
Mohamad, N. L., Kamal, S. M. M., Mokhtar, M. N., Husain, S. A. & Abdullah, N. Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochem. Eng. J. 111, 10–17 (2016).
doi: 10.1016/j.bej.2016.02.017
Manaf, S. F. A., Luthfi, A. A. I., Tan, J. P., Abdul, P. M. & Jamali, N. S. Kinetic study and model of fermentation parameters affected growth and xylitol production in bioreactor by Kluyveromyces marxianus ATCC 36,907. Biomass Convers. Biorefin. 13, 7247–7263 (2023).
doi: 10.1007/s13399-022-02976-2
Mardawati, E., Trirakhmadi, A., Kresnowati, M. & Setiadi, T. Kinetic study on fermentation of xylose for the xylitol production. J. Ind. Inf. Technol. Agric. 1, 1–8 (2017).
Tizazu, B. Z., Roy, K. & Moholkar, V. S. Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresour. Technol. 268, 247–258 (2018).
doi: 10.1016/j.biortech.2018.07.141
pubmed: 30081284
Porninta, K. et al. Pretreatment and enzymatic hydrolysis optimization of lignocellulosic biomass for ethanol, xylitol, and phenylacetylcarbinol co-production using Candida magnoliae. Front. Bioeng. Biotechnol. 11 (2023).
Yuvadetkun, P., Leksawasdi, N. & Boonmee, M. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production. Prep. Biochem. Biotechnol. 47, 268–275 (2017).
doi: 10.1080/10826068.2016.1224244
pubmed: 27552485
Leksawasdi, N., Joachimsthal, E. L. & Rogers, P. L. Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol. Lett. 23, 1087–1093 (2001).
doi: 10.1023/A:1010599530577
Chattopadhyay, A. & Maiti, M. K. Efficient xylose utilization leads to highest lipid productivity in Candida tropicalis SY005 among six yeast strains grown in mixed sugar medium. Appl. Microbiol. Biotechnol. 104, 3133–3144 (2020).
doi: 10.1007/s00253-020-10443-z
pubmed: 32076780
Kim, J., Ryu, Y. & Seo, J. Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. J. Ind. Microbiol. Biotechnol. 22, 181–186 (1999).
doi: 10.1038/sj.jim.2900626
Silva, D. D., Mancilha, I. M., Silva, S. S. & Felipe, M. D. Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Brazil. Arch. Biol. Technol. 50, 207–215 (2007).
doi: 10.1590/S1516-89132007000200005
Leksawasdi, N., Breuer, M., Hauer, B., Rosche, B. & Rogers, L. Kinetics of pyruvate decarboxylase deactivation by benzaldehyde. Biocatalysis Biotransform. 21, 315–320 (2003).
doi: 10.1080/10242420310001630164
Khemacheewakul, J. et al. Validation of mathematical model with phosphate activation effect by batch (R)-phenylacetylcarbinol biotransformation process utilizing Candida tropicalis pyruvate decarboxylase in phosphate buffer. Sci. Rep. 11, 1–11 (2021).
doi: 10.1038/s41598-021-91294-0
Nunta, R. et al. Ethanol and phenylacetylcarbinol production processes of Candida tropicalis TISTR 5306 and Saccharomyces cerevisiae TISTR 5606 in fresh juices from longan fruit of various sizes. J. Food Process. Preserv. 42, e13815 (2018).
doi: 10.1111/jfpp.13815
Lee, S. J. et al. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2, 3-butanediol production by Enterobacter aerogenes. Biotechnol. J. 10, 1920–1928 (2015).
doi: 10.1002/biot.201500090
pubmed: 26479290
Mahakuntha, C., Reungsang, A., Nunta, R. & Leksawasdi, N. Kinetics of whole cells and ethanol production from Candida tropicalis TISTR 5306 cultivation in batch and fed-batch modes using assorted grade fresh longan juice. Anais da Acad. Brasileira de Ciências 93, e20200220 (2021).
doi: 10.1590/0001-3765202120200220
Khemacheewakul, J. et al. Development of mathematical model for pyruvate decarboxylase deactivation kinetics by benzaldehyde with inorganic phosphate activation effect. Chiang Mai J. Sci. 45, 1426–1438 (2018).
Tamburini, E., Bianchini, E., Bruni, A. & Forlani, G. Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels, and its consequence on xylitol production by Candida tropicalis. Enzyme Microb. Technol. 46, 352–359 (2010).
doi: 10.1016/j.enzmictec.2010.01.001
Saha, B. C. & Kennedy, G. J. Optimization of xylitol production from xylose by a novel arabitol limited co-producing Barnettozyma populi NRRL Y-12728. Prep. Biochem. Biotechnol. 51, 761–768 (2021).
doi: 10.1080/10826068.2020.1855443
pubmed: 33305654
Eryasar, K. & Karasu-Yalcin, S. Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis. Biotech 6, 1–7 (2016).
Prakash, G., Varma, A., Prabhune, A., Shouche, Y. & Rao, M. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour. Technol. 102, 3304–3308 (2011).
doi: 10.1016/j.biortech.2010.10.074
pubmed: 21067918
Xu, L. et al. Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech. 21, 341–347 (2019).
doi: 10.1007/s12355-018-0650-y
Kim, S., Lee, J. & Sung, B. H. Isolation and characterization of the stress-tolerant Candida tropicalis YHJ1 and evaluation of its xylose reductase for xylitol production from acid pre-treatment wastewater. Front. Bioeng. Biotechnol. 7, 138 (2019).
doi: 10.3389/fbioe.2019.00138
pubmed: 31338365
pmcid: 6626919
Chattopadhyay, A., Singh, R., Das, A. K. & Maiti, M. K. Characterization of two sugar transporters responsible for efficient xylose uptake in an oleaginous yeast Candida tropicalis SY005. Archiv. Biochem. Biophys. 695, 108645 (2020).
doi: 10.1016/j.abb.2020.108645
Prabhu, A. A. et al. Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. Biotechnol. Biofuels 13, 1–15 (2020).
doi: 10.1186/s13068-020-01845-2
Zhang, C., Qin, J., Dai, Y., Mu, W. & Zhang, T. Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis. J. Biotechnol. 296, 7–13 (2019).
doi: 10.1016/j.jbiotec.2019.01.026
pubmed: 30853634
Tamburini, E., Costa, S., Marchetti, M. G. & Pedrini, P. Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules 5, 1979–1989 (2015).
doi: 10.3390/biom5031979
pubmed: 26295411
pmcid: 4598783
Louie, T. M. et al. Production of bio-xylitol from D-xylose by an engineered Pichia pastoris expressing a recombinant xylose reductase did not require any auxiliary substrate as electron donor. Microbial. Cell Factories 20, 1–13 (2021).
doi: 10.1186/s12934-021-01534-1
Sun, T., Yu, Y., Wang, K., Ledesma-Amaro, R. & Ji, X.-J. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. Bioresour. Technol. 337, 125484 (2021).
doi: 10.1016/j.biortech.2021.125484
pubmed: 34320765
Rafiqul, I., Sakinah, A. & Zularisam, A. Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnol. Lett. 37, 191–196 (2015).
doi: 10.1007/s10529-014-1672-5
pubmed: 25214231
Kaur, S., Guleria, P. & Yadav, S. K. Evaluation of fermentative xylitol production potential of adapted strains of Meyerozyma caribbica and Candida tropicalis from rice straw hemicellulosic hydrolysate. Fermentation 9, 181 (2023).
doi: 10.3390/fermentation9020181
Kumar, V., Sandhu, P. P., Ahluwalia, V., Mishra, B. B. & Yadav, S. K. Improved upstream processing for detoxification and recovery of xylitol produced from corncob. Bioresour. Technol. 291, 121931 (2019).
doi: 10.1016/j.biortech.2019.121931
pubmed: 31382093
Ahuja, V. et al. Process development for detoxification of corncob hydrolysate using activated charcoal for xylitol production. J. Environ. Chem. Eng. 10, 107097 (2022).
doi: 10.1016/j.jece.2021.107097
de Andrade, B. I., Jofre, F. M., Lacerda, T. M. & de Almeida Felipe, M. D. Xylitol production by Candida tropicalis from sugarcane bagasse and straw: An adaptive approach to improve fermentative performance. BioEnergy Res. 17, 1041–1054 (2024).
doi: 10.1007/s12155-023-10709-0