Inflammaging and Osteoarthritis.


Journal

Clinical reviews in allergy & immunology
ISSN: 1559-0267
Titre abrégé: Clin Rev Allergy Immunol
Pays: United States
ID NLM: 9504368

Informations de publication

Date de publication:
Apr 2023
Historique:
accepted: 18 04 2022
pubmed: 19 6 2022
medline: 21 3 2023
entrez: 18 6 2022
Statut: ppublish

Résumé

Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.

Identifiants

pubmed: 35716253
doi: 10.1007/s12016-022-08941-1
pii: 10.1007/s12016-022-08941-1
doi:

Substances chimiques

Inflammasomes 0
Cytokines 0
Inflammation Mediators 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

222-238

Subventions

Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : RF-2016-02364842

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bland JH, Cooper SM (1984) Osteoarthritis: a review of the cell biology involved and evidence for reversibility. Management rationally related to known genesis and pathophysiology. Semin Arthritis Rheum 14:106–133
pubmed: 6399624 doi: 10.1016/0049-0172(84)90002-7
Hutton CW (1989) Osteoarthritis: the cause not result of joint failure? Ann Rheum Dis 48:958–961. https://doi.org/10.1136/ard.48.11.958
doi: 10.1136/ard.48.11.958 pubmed: 2688566 pmcid: 1003922
Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–199. https://doi.org/10.1093/bmb/lds038
doi: 10.1093/bmb/lds038 pubmed: 23337796
Altman R, Alarcón G, Appelrouth D et al (1991) The American college of rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 34:505–514. https://doi.org/10.1002/art.1780340502
doi: 10.1002/art.1780340502 pubmed: 2025304
Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum 29:1039–1049. https://doi.org/10.1002/art.1780290816
doi: 10.1002/art.1780290816 pubmed: 3741515
Altman R, Alarcon G, Appelrouth D et al (1990) The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum 33:1601–1610. https://doi.org/10.1002/art.1780331101
doi: 10.1002/art.1780331101 pubmed: 2242058
Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494
doi: 10.1136/ard.16.4.494 pubmed: 13498604 pmcid: 1006995
Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707
pubmed: 22392533 pmcid: 3366018 doi: 10.1002/art.34453
Sharma L, Chmiel JS, Almagor O et al (2014) Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 66:1811–1819. https://doi.org/10.1002/art.38611
doi: 10.1002/art.38611 pubmed: 24974824 pmcid: 4162852
Hunter DJ, March L, Chew M (2020) Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396:1711–1712
pubmed: 33159851 doi: 10.1016/S0140-6736(20)32230-3
Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26:355–369
pubmed: 20699159 pmcid: 2920533 doi: 10.1016/j.cger.2010.03.001
Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II Arthritis Rheum 58:26–35. https://doi.org/10.1002/art.23176
doi: 10.1002/art.23176 pubmed: 18163497
Zhang Y, Niu J, Kelly-Hayes M et al (2002) Prevalence of symptomatic hand osteoarthritis and its impact on functional status among the elderly: the Framingham study. Am J Epidemiol 156:1021–1027. https://doi.org/10.1093/aje/kwf141
doi: 10.1093/aje/kwf141 pubmed: 12446258
Xie F, Kovic B, Jin X et al (2016) Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34:1087–1100
pubmed: 27339668 doi: 10.1007/s40273-016-0424-x
Hubertsson J, Turkiewicz A, Petersson IF, Englund M (2017) Understanding occupation, sick leave, and disability pension due to knee and hip osteoarthritis from a sex perspective. Arthritis Care Res 69:226–233. https://doi.org/10.1002/acr.22909
doi: 10.1002/acr.22909
Cross M, Smith E, Hoy D et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73:1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763
doi: 10.1136/annrheumdis-2013-204763 pubmed: 24553908
Haan MN, Lee A, Odden MC et al (2016) Gender differences in the combined effects of cardiovascular disease and osteoarthritis on progression to functional impairment in older Mexican Americans. J Gerontol - Ser A Biol Sci Med Sci 71:1089–1095. https://doi.org/10.1093/gerona/glw014
doi: 10.1093/gerona/glw014
Park JI, Jung HH (2017) Estimation of years lived with disability due to noncommunicable diseases and injuries using a population-representative survey. PLoS ONE 12.  https://doi.org/10.1371/journal.pone.0172001
Veronese N, Stubbs B, Solmi M et al (2017) Association between lower limb osteoarthritis and incidence of depressive symptoms: data from the osteoarthritis initiative. Age Ageing 46:470–476. https://doi.org/10.1093/ageing/afw216
doi: 10.1093/ageing/afw216 pubmed: 27932358
Kye SY, Park K (2017) Suicidal ideation and suicidal attempts among adults with chronic diseases: a cross-sectional study. Compr Psychiatry 73:160–167. https://doi.org/10.1016/j.comppsych.2016.12.001
doi: 10.1016/j.comppsych.2016.12.001 pubmed: 27992846
Innes KE, Sambamoorthi U (2018) The association of perceived memory loss with osteoarthritis and related joint pain in a large Appalachian population. Pain Med (United States) 19:1340–1356. https://doi.org/10.1093/pm/pnx107
doi: 10.1093/pm/pnx107
Schieir O, Tosevski C, Glazier RH et al (2017) Incident myocardial infarction associated with major types of arthritis in the general population: a systematic review and meta-analysis. Ann Rheum Dis 76:1396–1404. https://doi.org/10.1136/annrheumdis-2016-210275
doi: 10.1136/annrheumdis-2016-210275 pubmed: 28219882
Chung WS, Lin HH, Ho FM et al (2016) Risks of acute coronary syndrome in patients with osteoarthritis: a nationwide population-based cohort study. Clin Rheumatol 35:2807–2813. https://doi.org/10.1007/s10067-016-3391-x
doi: 10.1007/s10067-016-3391-x pubmed: 27585925
Courties A, Sellam J, Maheu E et al (2017) Coronary heart disease is associated with a worse clinical outcome of hand osteoarthritis: a cross-sectional and longitudinal study. RMD Open 3.  https://doi.org/10.1136/rmdopen-2016-000344
Gao SG, Zeng C, Xiong YL et al (2016) Is painful knee an independent predictor of mortality in middle-aged women? Ann Rheum Dis 75:e22
pubmed: 26740310 doi: 10.1136/annrheumdis-2015-209026
Piva SR, Susko AM, Khoja SS et al (2015) Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin Geriatr Med 31:67–87
pubmed: 25453302 doi: 10.1016/j.cger.2014.08.019
Hawker GA, Croxford R, Bierman AS et al (2017) Osteoarthritis-related difficulty walking and risk for diabetes complications. Osteoarthr Cartil 25:67–75. https://doi.org/10.1016/j.joca.2016.08.003
doi: 10.1016/j.joca.2016.08.003
Jeon CY, Lokken RP, Hu FB, Van Dam RM (2007) Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care 30:744–752
pubmed: 17327354 doi: 10.2337/dc06-1842
Messier SP, Mihalko SL, Legault C et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. JAMA - J Am Med Assoc 310:1263–1273. https://doi.org/10.1001/jama.2013.277669
doi: 10.1001/jama.2013.277669
Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805. https://doi.org/10.2337/diabetes.52.7.1799
doi: 10.2337/diabetes.52.7.1799 pubmed: 12829649
Rahman MM, Cibere J, Anis AH et al (2014) Risk of type 2 diabetes among osteoarthritis patients in a prospective longitudinal study. Int J Rheumatol 2014.  https://doi.org/10.1155/2014/620920
Neogi T, Zhang Y (2013) Epidemiology of osteoarthritis. Rheum Dis Clin North Am 39:1–19
pubmed: 23312408 doi: 10.1016/j.rdc.2012.10.004
Agricola R, Heijboer MP, Roze RH et al (2013) Pincer deformity does not lead to osteoarthritis of the hip whereas acetabular dysplasia does: acetabular coverage and development of osteoarthritis in a nationwide prospective cohort study (CHECK). Osteoarthr Cartil 21:1514–1521. https://doi.org/10.1016/j.joca.2013.07.004
doi: 10.1016/j.joca.2013.07.004
Valdes AM, Spector TD (2011) Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 7:23–32. https://doi.org/10.1038/NRRHEUM.2010.191
doi: 10.1038/NRRHEUM.2010.191 pubmed: 21079645
Loughlin J (2005) The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 7.  https://doi.org/10.1017/S1462399405009257
Zeggini E, Panoutsopoulou K, Southam L et al (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380:815–823. https://doi.org/10.1016/S0140-6736(12)60681-3
doi: 10.1016/S0140-6736(12)60681-3 pubmed: 22763110
Warnera SC, Valdesa AM (2017) Genetic association studies in osteoarthritis: is it fairytale? Curr Opin Rheumatol 29:103–109
doi: 10.1097/BOR.0000000000000352
Hochberg MC, Yerges-Armstrong L, Yau M, Mitchell BD (2013) Genetic epidemiology of osteoarthritis: recent developments and future directions. Curr Opin Rheumatol 25:192–197
pubmed: 23249833 pmcid: 3771580 doi: 10.1097/BOR.0b013e32835cfb8e
Rogers EL, Reynard LN, Loughlin J (2015) The role of inflammation-related genes in osteoarthritis. Osteoarthr Cartil 23:1933–1938. https://doi.org/10.1016/J.JOCA.2015.01.003
doi: 10.1016/J.JOCA.2015.01.003
Reynard LN, Loughlin J (2013) Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol 9:573–583. https://doi.org/10.1038/NRRHEUM.2013.121
doi: 10.1038/NRRHEUM.2013.121 pubmed: 23958796
Goldring MB, Marcu KB (2012) Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med 18:109–118. https://doi.org/10.1016/J.MOLMED.2011.11.005
doi: 10.1016/J.MOLMED.2011.11.005 pubmed: 22178468
Barter MJ, Bui C, Young DA (2012) Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil 20:339–349. https://doi.org/10.1016/J.JOCA.2011.12.012
doi: 10.1016/J.JOCA.2011.12.012
Loughlin J, Reynard LN (2015) Osteoarthritis: epigenetics of articular cartilage in knee and hip OA. Nat Rev Rheumatol 11:6–7. https://doi.org/10.1038/NRRHEUM.2014.189
doi: 10.1038/NRRHEUM.2014.189 pubmed: 25366188
Shen J, Abu-Amer Y, O’Keefe RJ, McAlinden A (2017) Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 58:49–63. https://doi.org/10.1080/03008207.2016.1208655
doi: 10.1080/03008207.2016.1208655 pubmed: 27389927
Unnikrishnan A, Freeman WM, Jackson J et al (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Ther 195:172–185. https://doi.org/10.1016/J.PHARMTHERA.2018.11.001
doi: 10.1016/J.PHARMTHERA.2018.11.001 pubmed: 30419258
Allen KD, Golightly YM (2015) State of the evidence. Curr Opin Rheumatol 27:276–283
pubmed: 25775186 pmcid: 4405030 doi: 10.1097/BOR.0000000000000161
Glyn-Jones S, Palmer AJR, Agricola R et al (2015) Osteoarthritis. In: The Lancet. Lancet Publishing Group, pp 376–387
Agricola R, Waarsing JH, Arden NK et al (2013) Cam impingement of the hip-a risk factor for hip osteoarthritis. Nat Rev Rheumatol 9:630–634
pubmed: 23881070 doi: 10.1038/nrrheum.2013.114
Neogi T, Bowes MA, Niu J et al (2013) Magnetic resonance imaging-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum 65:2048–2058. https://doi.org/10.1002/art.37987
doi: 10.1002/art.37987 pubmed: 23650083 pmcid: 3729737
Sharma L, Chmiel JS, Almagor O et al (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72:235–240. https://doi.org/10.1136/annrheumdis-2011-201070
doi: 10.1136/annrheumdis-2011-201070 pubmed: 22550314
Felson DT, Niu J, Gross KD et al (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the multicenter osteoarthritis study and the osteoarthritis initiative. Arthritis Rheum 65:355–362. https://doi.org/10.1002/art.37726
doi: 10.1002/art.37726 pubmed: 23203672 pmcid: 3558618
Harvey WF, Yang M, Cooke TDV et al (2010) Association of leg-length inequality with knee osteoarthritis a cohort study. Ann Intern Med 152:287–295. https://doi.org/10.7326/0003-4819-152-5-201003020-00006
doi: 10.7326/0003-4819-152-5-201003020-00006 pubmed: 20194234 pmcid: 2909027
Wang Y, Wluka AE, Berry PA et al (2012) Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis. Arthritis Rheum 64:3917–3925. https://doi.org/10.1002/art.34681
doi: 10.1002/art.34681 pubmed: 23192791
Lievense AM, Bierma-Zeinstra SMA, Verhagen AP et al (2003) Influence of sporting activities on the development of osteoarthritis of the hip: a systematic review. Arthritis Care Res 49:228–236
doi: 10.1002/art.11012
Siebenrock KA, Kaschka I, Frauchiger L et al (2013) Prevalence of cam-type deformity and hip pain in elite ice hockey players before and after the end of growth. Am J Sports Med 41:2308–2313. https://doi.org/10.1177/0363546513497564
doi: 10.1177/0363546513497564 pubmed: 23911701
Nevitt MC, Zhang Y, Javaid MK et al (2010) High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: The MOST study. Ann Rheum Dis 69:163–168. https://doi.org/10.1136/ard.2008.099531
doi: 10.1136/ard.2008.099531 pubmed: 19147619
Muthuri SG, McWilliams DF, Doherty M, Zhang W (2011) History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthr Cartil 19:1286–1293. https://doi.org/10.1016/j.joca.2011.07.015
doi: 10.1016/j.joca.2011.07.015
Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 18:24–33. https://doi.org/10.1016/j.joca.2009.08.010
doi: 10.1016/j.joca.2009.08.010
Conde J, Scotece M, Gómez R et al (2011) Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011:1–8. https://doi.org/10.1155/2011/203901
doi: 10.1155/2011/203901
Reyes C, Leyland KM, Peat G et al (2016) Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol 68:1869–1875. https://doi.org/10.1002/art.39707
doi: 10.1002/art.39707 pubmed: 27059260 pmcid: 4966641
Gersing AS, Schwaiger BJ, Nevitt MC et al (2017) Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the osteoarthritis initiative. Radiology 284:508–520. https://doi.org/10.1148/radiol.2017161005
doi: 10.1148/radiol.2017161005 pubmed: 28463057
Atukorala I, Makovey J, Lawler L et al (2016) Is there a dose-response relationship between weight loss and symptom improvement in persons with knee osteoarthritis? Arthritis Care Res 68:1106–1114. https://doi.org/10.1002/acr.22805
doi: 10.1002/acr.22805
Frey N, Hügle T, Jick SS et al (2017) Hyperlipidaemia and incident osteoarthritis of the hand: a population-based case-control study. Osteoarthr Cartil 25:1040–1045. https://doi.org/10.1016/j.joca.2017.01.014
doi: 10.1016/j.joca.2017.01.014
Garcia-Gil M, Reyes C, Ramos R et al (2017) Serum lipid levels and risk of hand osteoarthritis: the Chingford prospective cohort study. Sci Rep 7.  https://doi.org/10.1038/s41598-017-03317-4
Driban JB, Lo GH, Eaton CB et al (2016) Exploratory analysis of osteoarthritis progression among medication users: data from the Osteoarthritis Initiative. Ther Adv Musculoskelet Dis 8:207–219. https://doi.org/10.1177/1759720X16664323
doi: 10.1177/1759720X16664323 pubmed: 28321269 pmcid: 5322858
Lo GH, McAlindon TE, Katz JN et al (2017) Systolic and pulse pressure associate with incident knee osteoarthritis: data from the Osteoarthritis Initiative. Clin Rheumatol 36:2121–2128. https://doi.org/10.1007/s10067-017-3656-z
doi: 10.1007/s10067-017-3656-z pubmed: 28573369 pmcid: 5709188
Magnusson K, Bech Holte K, Juel NG et al (2017) Long term type 1 diabetes is associated with hand pain, disability and stiffness but not with structural hand osteoarthritis features - The Dialong hand study. PLoS ONE 12.  https://doi.org/10.1371/journal.pone.0177118
Frey N, Hügle T, Jick SS et al (2016) Type II diabetes mellitus and incident osteoarthritis of the hand: a population-based case–control analysis. Osteoarthr Cartil 24:1535–1540. https://doi.org/10.1016/j.joca.2016.04.005
doi: 10.1016/j.joca.2016.04.005
Garessus EDG, de Mutsert R, Visser AW et al (2016) No association between impaired glucose metabolism and osteoarthritis. Osteoarthr Cartil 24:1541–1547. https://doi.org/10.1016/j.joca.2016.04.007
doi: 10.1016/j.joca.2016.04.007
Wang X, Cicuttini F, Jin X et al (2017) Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis. Osteoarthr Cartil 25:1304–1312. https://doi.org/10.1016/j.joca.2017.02.804
doi: 10.1016/j.joca.2017.02.804
Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21:16–21
doi: 10.1016/j.joca.2012.11.012
Hwang HS, Kim HA (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 16:26035–26054
pubmed: 26528972 pmcid: 4661802 doi: 10.3390/ijms161125943
Guilak F, Nims RJ, Dicks A et al (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71–72:40–50
pubmed: 29800616 pmcid: 6146061 doi: 10.1016/j.matbio.2018.05.008
Funck-Brentano T, Cohen-Solal M (2015) Subchondral bone and osteoarthritis. Curr Opin Rheumatol 27:420–426
pubmed: 26002035 doi: 10.1097/BOR.0000000000000181
Kovács B, Vajda E, Nagy EE (2019) Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 20
Zhou X, Cao H, Yuan Y, Wu W (2020) Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. Biomed Res Int 2020
Mathiessen A, Conaghan PG (2017) Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther 19
Sarmanova A, Hall M, Moses J et al (2016) Synovial changes detected by ultrasound in people with knee osteoarthritis – a meta-analysis of observational studies. Osteoarthr Cartil 24:1376–1383. https://doi.org/10.1016/j.joca.2016.03.004
doi: 10.1016/j.joca.2016.03.004
Guermazi A, Hayashi D, Roemer FW et al (2014) Synovitis in knee osteoarthritis assessed by contrast-enhanced magnetic resonance imaging (MRI) is associated with radiographic tibiofemoral osteoarthritis and MRI-detected widespread cartilage damage: The MOST study. J Rheumatol 41:501–508. https://doi.org/10.3899/jrheum.130541
doi: 10.3899/jrheum.130541 pubmed: 24429179 pmcid: 5476295
Felson DT, Niu J, Neogi T et al (2016) Synovitis and the risk of knee osteoarthritis: the MOST study. Osteoarthr Cartil 24:458–464. https://doi.org/10.1016/j.joca.2015.09.013
doi: 10.1016/j.joca.2015.09.013
Prieto-Potin I, Largo R, Roman-Blas JA et al (2015) Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis. BMC Musculoskelet Disord 16.  https://doi.org/10.1186/s12891-015-0664-5
Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014
Klein-Wieringa IR, De Lange-Brokaar BJE, Yusuf E et al (2016) Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J Rheumatol 43:771–778. https://doi.org/10.3899/jrheum.151068
doi: 10.3899/jrheum.151068 pubmed: 26980579
Kapoor M, Martel-Pelletier J, Lajeunesse D et al (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42
pubmed: 21119608 doi: 10.1038/nrrheum.2010.196
Cai S, Ming B, Ye C et al (2021) Similar transition processes in synovial fibroblasts from rheumatoid arthritis and osteoarthritis: a single-cell study. Clin Dev Immunol 2019. https://doi.org/10.1155/2019/4080735
Jin X, Beguerie JR, Zhang W et al (2015) Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis 74:703–710. https://doi.org/10.1136/annrheumdis-2013-204494
doi: 10.1136/annrheumdis-2013-204494 pubmed: 24363360
Stannus O, Jones G, Cicuttini F et al (2010) Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr Cartil 18:1441–1447. https://doi.org/10.1016/j.joca.2010.08.016
doi: 10.1016/j.joca.2010.08.016
Livshits G, Zhai G, Hart DJ et al (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheum 60:2037–2045. https://doi.org/10.1002/art.24598
doi: 10.1002/art.24598 pubmed: 19565477 pmcid: 2841820
Spector TD, Hart DJ, Nandra D et al (1997) Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum 40:723–727. https://doi.org/10.1002/art.1780400419
doi: 10.1002/art.1780400419 pubmed: 9125256
Bulló M, Casas-Agustench P, Amigó-Correig P et al (2007) Inflammation, obesity and comorbidities: the role of diet. Public Health Nutr 10:1164–1172
pubmed: 17903326 doi: 10.1017/S1368980007000663
Presle N, Pottie P, Dumond H et al (2006) Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartil 14:690–695. https://doi.org/10.1016/j.joca.2006.01.009
doi: 10.1016/j.joca.2006.01.009
de Boer TN, van Spil WE, Huisman AM et al (2012) Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr Cartil 20:846–853. https://doi.org/10.1016/j.joca.2012.05.002
doi: 10.1016/j.joca.2012.05.002
Liu B, Gao YH, Dong N et al (2019) Differential expression of adipokines in the synovium and infrapatellar fat pad of osteoarthritis patients with and without metabolic syndrome. Connect Tissue Res 60:611–618. https://doi.org/10.1080/03008207.2019.1620221
doi: 10.1080/03008207.2019.1620221 pubmed: 31137976
Tu C, He J, Wu B et al (2019) An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 113:1–12
pubmed: 30539776 doi: 10.1016/j.cyto.2018.06.019
Neumann E, Junker S, Schett G et al (2016) Adipokines in bone disease. Nat Rev Rheumatol 12:296–302
pubmed: 27080691 doi: 10.1038/nrrheum.2016.49
Zhao CW, Gao YH, Song WX et al (2019) An update on the emerging role of resistin on the pathogenesis of osteoarthritis. Mediators Inflamm 2019
Garten A, Schuster S, Penke M et al (2015) Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 11:535–546. https://doi.org/10.1038/NRENDO.2015.117
doi: 10.1038/NRENDO.2015.117 pubmed: 26215259
Travelli C, Consonni FM, Sangaletti S et al (2019) Nicotinamide phosphoribosyltransferase acts as a metabolic gate for mobilization of myeloid-derived suppressor cells. Cancer Res 79:1938–1951. https://doi.org/10.1158/0008-5472.CAN-18-1544
doi: 10.1158/0008-5472.CAN-18-1544 pubmed: 30777853
Yu Q, Dong L, Li Y, Liu G (2018) SIRT1 and HIF1α signaling in metabolism and immune responses. Cancer Lett 418:20–26. https://doi.org/10.1016/J.CANLET.2017.12.035
doi: 10.1016/J.CANLET.2017.12.035 pubmed: 29306019
Dvir-Ginzberg M, Steinmeyer J (2013) Towards elucidating the role of SirT1 in osteoarthritis. Front Biosci (Landmark Ed) 18:343–355. https://doi.org/10.2741/4105
Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways. Mech Ageing Dev 187.  https://doi.org/10.1016/J.MAD.2020.111215
Tsai CH, Liu SC, Chung WH et al (2020) Visfatin increases VEGF-dependent angiogenesis of endothelial progenitor cells during osteoarthritis progression. Cells 9.  https://doi.org/10.3390/CELLS9051315
Suzuki A, Yabu A, Nakamura H (2020) Advanced glycation end products in musculoskeletal system and disorders. Methods 203:179–186. https://doi.org/10.1016/j.ymeth.2020.09.012
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25:2185–2197
pubmed: 23838007 doi: 10.1016/j.cellsig.2013.06.013
Lambert C, Zappia J, Sanchez C et al (2021) The damage-associated molecular patterns (DAMPs) as potential targets to treat osteoarthritis: perspectives from a review of the literature. Front Med 7
Motta F, Sica A, Selmi C (2020) Frailty in rheumatic diseases. Front Immunol 11
Fulop T, Larbi A, Pawelec G et al (2021) Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. https://doi.org/10.1007/S12016-021-08899-6
doi: 10.1007/S12016-021-08899-6 pubmed: 34536213 pmcid: 8449217
Franceschi C, Campisi J (2014) Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J Gerontol - Ser A Biol Sci Med Sci 69:S4–S9
doi: 10.1093/gerona/glu057
Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262
doi: 10.3322/caac.21262 pubmed: 25651787
Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713
pubmed: 25417146 pmcid: 4852871 doi: 10.1016/j.cell.2014.10.039
López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194
pubmed: 23746838 pmcid: 3836174 doi: 10.1016/j.cell.2013.05.039
Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247
pubmed: 11089981 doi: 10.1038/35041687
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol Med 49:1603–1616
Sosa V, Moliné T, Somoza R et al (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390
pubmed: 23123177 doi: 10.1016/j.arr.2012.10.004
Karunakaran U, Park KG (2013) A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab J 37:106–112
pubmed: 23641350 pmcid: 3638220 doi: 10.4093/dmj.2013.37.2.106
Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013
Yu W, Zhang H, Shin MR, Sesti F (2019) Oxidation of KCNB1 potassium channels in the murine brain during aging is associated with cognitive impairment. Biochem Biophys Res Commun 512:665–669. https://doi.org/10.1016/j.bbrc.2019.03.130
doi: 10.1016/j.bbrc.2019.03.130 pubmed: 30922570 pmcid: 6471606
Liu Z, Zhou T, Ziegler AC et al (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017
John-Schuster G, Günter S, Hager K et al (2016) Inflammaging increases susceptibility to cigarette smoke-induced COPD. Oncotarget 7:30068–30083. https://doi.org/10.18632/oncotarget.4027
Mateen S, Moin S, Khan AQ et al (2016) Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 11.  https://doi.org/10.1371/journal.pone.0152925
Li Y, Goronzy JJ, Weyand CM (2018) DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 105:118–127
pubmed: 29101015 doi: 10.1016/j.exger.2017.10.027
Franceschi C, Bonafè M, Valensin S et al (2000) Inflammaging. An evolutionary perspective on immunosenescence. In: Annals of the New York Academy of Sciences. New York Academy of Sciences, pp 244–254
Vitale G, Salvioli S, Franceschi C (2013) Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol 9:228–240
pubmed: 23438835 doi: 10.1038/nrendo.2013.29
Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35
pubmed: 30287177 doi: 10.1016/j.smim.2018.09.003
Callender LA, Carroll EC, Beal RWJ et al (2018) Human CD8 + EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17.  https://doi.org/10.1111/acel.12675
Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6.  https://doi.org/10.1371/journal.pbio.0060301
Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118
doi: 10.1146/annurev-pathol-121808-102144
Bleve A, Motta F, Durante B et al (2022) Immunosenescence, inflammaging, and frailty: role of myeloid cells in age-related diseases. Clin Rev Allergy Immunol. https://doi.org/10.1007/S12016-021-08909-7
doi: 10.1007/S12016-021-08909-7 pubmed: 35031957 pmcid: 8760106
Coder BD, Wang H, Ruan L, Su D-M (2015) Thymic involution perturbs negative selection leading to autoreactive t cells that induce chronic inflammation. J Immunol 194:5825–5837. https://doi.org/10.4049/jimmunol.1500082
doi: 10.4049/jimmunol.1500082 pubmed: 25957168
Coder B, Su DM (2015) Thymic involution beyond T-cell insufficiency. Oncotarget 6:21777–21778
pubmed: 26318588 pmcid: 4673115 doi: 10.18632/oncotarget.4970
Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B (2011) Persistent viral infections and immune aging. Ageing Res Rev 10:362–369
pubmed: 20727987 doi: 10.1016/j.arr.2010.08.003
Ebersole JL, Graves CL, Gonzalez OA et al (2000) (2016) Aging, inflammation, immunity and periodontal disease. Periodontol 72:54–75
doi: 10.1111/prd.12135
Franceschi C, Garagnani P, Vitale G et al (2017) Inflammaging and ‘Garb-aging.’ Trends Endocrinol Metab 28:199–212
pubmed: 27789101 doi: 10.1016/j.tem.2016.09.005
Lee B-J, Min C-K, Hancock M et al (2021) Human cytomegalovirus host interactions: EGFR and host cell signaling is a point of convergence between viral infection and functional changes in infected cells. Front Microbiol 12:660901. https://doi.org/10.3389/fmicb.2021.660901
doi: 10.3389/fmicb.2021.660901 pubmed: 34025614 pmcid: 8138183
Lohr JM, Oldstone MBA (1990) Detection of cytomegalovirus nucleic acid sequences in pancreas in type 2 diabetes. Lancet 336:644–648. https://doi.org/10.1016/0140-6736(90)92145-8
doi: 10.1016/0140-6736(90)92145-8 pubmed: 1975850
Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107
pubmed: 21233852 doi: 10.1038/nri2925
Low H, Mukhamedova N, Cui HL et al (2016) Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep 16:186–200. https://doi.org/10.1016/j.celrep.2016.05.070
doi: 10.1016/j.celrep.2016.05.070 pubmed: 27320924 pmcid: 5389417
Yu Y, Clippinger AJ, Alwine JC (2011) Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol 19:360–367
pubmed: 21570293 pmcid: 3130066 doi: 10.1016/j.tim.2011.04.002
Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867
pubmed: 17167474 doi: 10.1038/nature05485
Ye J, Keller JN (2010) Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging (Albany NY) 2:361–368. https://doi.org/10.18632/aging.100155
Collino S, Montoliu I, Martin F-PJ et al (2013) Correction: metabolic signatures of extreme longevity in Northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 8.  https://doi.org/10.1371/annotation/5fb9fa6f-4889-4407-8430-6dfc7ecdfbdd
Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5.  https://doi.org/10.1371/journal.pone.0010667
Biagi E, Candela M, Franceschi C, Brigidi P (2011) The aging gut microbiota: new perspectives. Ageing Res Rev 10:428–429
pubmed: 21402177 doi: 10.1016/j.arr.2011.03.004
Cevenini E, Monti D, Franceschi C (2013) Inflamm-ageing. Curr Opin Clin Nutr Metab Care 16:14–20
pubmed: 23132168 doi: 10.1097/MCO.0b013e32835ada13
Biagi E, Franceschi C, Rampelli S et al (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485. https://doi.org/10.1016/j.cub.2016.04.016
doi: 10.1016/j.cub.2016.04.016 pubmed: 27185560
Franceschi C, Salvioli S, Garagnani P et al (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 8
Santoro A, Ostan R, Candela M et al (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75:129–148
pubmed: 29032502 doi: 10.1007/s00018-017-2674-y
Kundu P, Blacher E, Elinav E, Pettersson S (2017) Our gut microbiome: the evolving inner self. Cell 171:1481–1493
pubmed: 29245010 doi: 10.1016/j.cell.2017.11.024
Lee C, Longo V (2016) Dietary restriction with and without caloric restriction for healthy aging. F1000Research 5
Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322
pubmed: 22618766 pmcid: 3357299 doi: 10.2337/db11-1300
Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response 12:288–341. https://doi.org/10.2203/dose-response.13-035.Ristow
doi: 10.2203/dose-response.13-035.Ristow pubmed: 24910588 pmcid: 4036400
Das SK, Balasubramanian P, Weerasekara YK (2017) Nutrition modulation of human aging: the calorie restriction paradigm. Mol Cell Endocrinol 455:148–157. https://doi.org/10.1016/j.mce.2017.04.011
doi: 10.1016/j.mce.2017.04.011 pubmed: 28412520 pmcid: 7153268
Mirzaei H, Suarez JA, Longo VD (2014) Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 25:558–566
pubmed: 25153840 pmcid: 4254277 doi: 10.1016/j.tem.2014.07.002
Loeser RF, Olex AL, McNulty MA et al (2012) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64:705–717. https://doi.org/10.1002/ART.33388
doi: 10.1002/ART.33388 pubmed: 21972019 pmcid: 3269534
Long D, Blake S, Song XY et al (2008) Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther 10.  https://doi.org/10.1186/AR2376
Rezuș E, Cardoneanu A, Burlui A et al (2019) The link between inflammaging and degenerative joint diseases. Int J Mol Sci 20.  https://doi.org/10.3390/IJMS20030614
Millerand M, Berenbaum F, Jacques C (2019) Danger signals and inflammaging in osteoarthritis. Clin Exp Rheumatol 37:48–56
pubmed: 31621566
Goekoop RJ, Kloppenburg M, Kroon HM et al (2010) Low innate production of interleukin-1β and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthr Cartil 18:942–947. https://doi.org/10.1016/j.joca.2010.03.016
doi: 10.1016/j.joca.2010.03.016
Ni Z, Kuang L, Chen H et al (2019) The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis 10.  https://doi.org/10.1038/s41419-019-1739-2
Kato T, Miyaki S, Ishitobi H et al (2014) Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther 16.  https://doi.org/10.1186/ar4679
Chien SY, Tsai CH, Liu SC et al (2020) Noggin inhibits IL-1β and BMP-2 expression, and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis. Cells 9.  https://doi.org/10.3390/cells9040927
Nasi S, So A, Combes C et al (2016) Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann Rheum Dis 75:1372–1379. https://doi.org/10.1136/annrheumdis-2015-207487
doi: 10.1136/annrheumdis-2015-207487 pubmed: 26253096
Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420
pubmed: 27192932 pmcid: 4938009 doi: 10.1038/nrrheum.2016.65
Jeon H, Il IG (2017) Autophagy in osteoarthritis. Connect Tissue Res 58:497–508. https://doi.org/10.1080/03008207.2016.1240790
doi: 10.1080/03008207.2016.1240790 pubmed: 27668694
Gao T, Guo W, Chen M et al (2016) Extracellular vesicles and autophagy in osteoarthritis. Biomed Res Int 2016. https://doi.org/10.1155/2016/2428915
Ponchel F, Burska AN, Hensor EMA et al (2015) Changes in peripheral blood immune cell composition in osteoarthritis. Osteoarthr Cartil 23:1870–1878. https://doi.org/10.1016/j.joca.2015.06.018
doi: 10.1016/j.joca.2015.06.018
Zhu W, Zhang X, Jiang Y et al (2020) Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin Rheumatol 39:523–532. https://doi.org/10.1007/s10067-019-04768-y
doi: 10.1007/s10067-019-04768-y pubmed: 31624962
Shan Y, Qi C, Liu Y et al (2017) Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis. Mol Med Rep 15:1095–1102. https://doi.org/10.3892/mmr.2017.6132
doi: 10.3892/mmr.2017.6132 pubmed: 28112376 pmcid: 5367351
de Lange-Brokaar BJE, Ioan-Facsinay A, van Osch GJVM et al (2012) Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr Cartil 20:1484–1499. https://doi.org/10.1016/J.JOCA.2012.08.027
doi: 10.1016/J.JOCA.2012.08.027
Pessler F, Chen LX, Dai L et al (2008) A histomorphometric analysis of synovial biopsies from individuals with Gulf War Veterans’ illness and joint pain compared to normal and osteoarthritis synovium. Clin Rheumatol 27:1127–1134. https://doi.org/10.1007/S10067-008-0878-0
doi: 10.1007/S10067-008-0878-0 pubmed: 18414968
Mikolajczyk TP, Nosalski R, Szczepaniak P et al (2016) Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J 30:1987–1999. https://doi.org/10.1096/fj.201500088R
doi: 10.1096/fj.201500088R pubmed: 26873938 pmcid: 4836375
Lopes EBP, Filiberti A, Husain SA, Humphrey MB (2017) Immune contributions to osteoarthritis. Curr Osteoporos Rep 15:593–600. https://doi.org/10.1007/S11914-017-0411-Y
doi: 10.1007/S11914-017-0411-Y pubmed: 29098574
Siebuhr AS, Bay-Jensen AC, Jordan JM et al (2016) Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand J Rheumatol 45:87–98
pubmed: 26484849 doi: 10.3109/03009742.2015.1060259
Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol - Ser A Biol Sci Med Sci 56.  https://doi.org/10.1093/gerona/56.3.m146
Kojima G, Liljas AEM, Iliffe S (2019) Frailty syndrome: implications and challenges for health care policy. Risk Manag Healthc Policy 12:23–30
pubmed: 30858741 pmcid: 6385767 doi: 10.2147/RMHP.S168750
Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522
pubmed: 30065258 pmcid: 6146930 doi: 10.1038/s41569-018-0064-2
Motta F, Sica A, Selmi C (2020) Frailty in rheumatic diseases. Front Immunol 11.  https://doi.org/10.3389/FIMMU.2020.576134
Cacciatore F, Della-morte D, Basile C et al (2014) Long-term mortality in frail elderly subjects with osteoarthritis. Rheumatology (Oxford) 53:293–299. https://doi.org/10.1093/RHEUMATOLOGY/KET348
doi: 10.1093/RHEUMATOLOGY/KET348 pubmed: 24158755
Chen P, Huang L, Ma Y et al (2019) Intra-articular platelet-rich plasma injection for knee osteoarthritis: a summary of meta-analyses. J Orthop Surg Res 14.  https://doi.org/10.1186/s13018-019-1363-y
Le ADK, Enweze L, DeBaun MR, Dragoo JL (2019) Platelet-rich plasma. Clin Sports Med 38:17–44. https://doi.org/10.1016/J.CSM.2018.08.001
doi: 10.1016/J.CSM.2018.08.001 pubmed: 30466721
Spreafico A, Chellini F, Frediani B et al (2009) Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem 108:1153–1165. https://doi.org/10.1002/JCB.22344
doi: 10.1002/JCB.22344 pubmed: 19731249
Smyth NA, Murawski CD, Fortier LA et al (2013) Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy 29:1399–1409. https://doi.org/10.1016/J.ARTHRO.2013.03.004
doi: 10.1016/J.ARTHRO.2013.03.004 pubmed: 23669235
Battaglia M, Guaraldi F, Vannini F et al (2013) Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics 36.  https://doi.org/10.3928/01477447-20131120-13
Dallari D, Stagni C, Rani N et al (2016) Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med 44:664–671. https://doi.org/10.1177/0363546515620383
doi: 10.1177/0363546515620383 pubmed: 26797697
Doria C, Mosele GR, Caggiari G et al (2017) Treatment of early hip osteoarthritis: ultrasound-guided platelet rich plasma versus hyaluronic acid injections in a randomized clinical trial. Joints 5:152–155. https://doi.org/10.1055/S-0037-1605584
doi: 10.1055/S-0037-1605584 pubmed: 29270545 pmcid: 5738493
Di Sante L, Villani C, Santilli V et al (2016) Intra-articular hyaluronic acid vs platelet-rich plasma in the treatment of hip osteoarthritis. Med Ultrason 18:463–468. https://doi.org/10.11152/MU-874
doi: 10.11152/MU-874 pubmed: 27981279
Hamilton JA, Cook AD, Tak PP (2016) Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 16:53–70. https://doi.org/10.1038/NRD.2016.231
doi: 10.1038/NRD.2016.231 pubmed: 28031576
Lee KMC, Prasad V, Achuthan A et al (2020) Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthr Cartil 28:486–491. https://doi.org/10.1016/j.joca.2020.01.012
doi: 10.1016/j.joca.2020.01.012
Cook AD, Pobjoy J, Steidl S et al (2012) Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther 14.  https://doi.org/10.1186/AR4037
Steen-Louws C, Popov-Celeketic J, Mastbergen SC et al (2018) IL4-10 fusion protein has chondroprotective, anti-inflammatory and potentially analgesic effects in the treatment of osteoarthritis. Osteoarthr Cartil 26:1127–1135. https://doi.org/10.1016/j.joca.2018.05.005
doi: 10.1016/j.joca.2018.05.005
van Helvoort EM, de Visser HM, Lafeber FPJG et al (2021) IL4-10 fusion protein shows DMOAD activity in a rat osteoarthritis model. Cartilage 13:1155S-1164S. https://doi.org/10.1177/19476035211026736
doi: 10.1177/19476035211026736 pubmed: 34159843 pmcid: 8721682
Hwang HS, Park IY, Choi SY, Kim HA (2017) PEP-1-GRX-1 modulates matrix metalloproteinase-13 and nitric oxide expression of human articular chondrocytes. Cell Physiol Biochem 41:252–264. https://doi.org/10.1159/000456090
doi: 10.1159/000456090 pubmed: 28214840
Bin ZH, Zhang Y, Chen C et al (2016) Pioglitazone inhibits advanced glycation end product-induced matrix metalloproteinases and apoptosis by suppressing the activation of MAPK and NF-κB. Apoptosis 21:1082–1093. https://doi.org/10.1007/s10495-016-1280-z
doi: 10.1007/s10495-016-1280-z
Campo GM, Avenoso A, D’Ascola A et al (2012) Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. BioFactors 38:69–76. https://doi.org/10.1002/biof.202
doi: 10.1002/biof.202 pubmed: 22287316
Li Y, Zhang Y, Chen C et al (2016) Establishment of a rabbit model to study the influence of advanced glycation end products accumulation on osteoarthritis and the protective effect of pioglitazone. Osteoarthr Cartil 24:307–314. https://doi.org/10.1016/J.JOCA.2015.08.001
doi: 10.1016/J.JOCA.2015.08.001
Boileau C, Martel-Pelletier J, Fahmi H et al (2007) The peroxisome proliferator-activated receptor gamma agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum 56:2288–2298. https://doi.org/10.1002/ART.22726
doi: 10.1002/ART.22726 pubmed: 17599749
Kobayashi T, Notoya K, Naito T et al (2005) Pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum 52:479–487. https://doi.org/10.1002/ART.20792
doi: 10.1002/ART.20792 pubmed: 15692987
Chayanupatkul M, Honsawek S (2010) Soluble receptor for advanced glycation end products (sRAGE) in plasma and synovial fluid is inversely associated with disease severity of knee osteoarthritis. Clin Biochem 43:1133–1137. https://doi.org/10.1016/j.clinbiochem.2010.07.007
doi: 10.1016/j.clinbiochem.2010.07.007 pubmed: 20627100
Peng Y, Park HS, Tang LA et al (2019) Generation of sRAGE high transgenic mice to study inflammaging. Front Biosci - Landmark 24:555–563. https://doi.org/10.2741/4735
doi: 10.2741/4735
Luo Y, Li J, Wang B et al (2021) Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model. J Bioenerg Biomembr 53:285–293.  https://doi.org/10.1007/S10863-021-09889-1
Olcum M, Tufekci KU, Durur DY et al (2021) Ethyl Ethyl pyruvate attenuates microglial NLRP3 inflammasome activation via inhibition of HMGB1/NF-κB/miR-223 signaling. Antioxidants (Basel, Switzerland) 10.  https://doi.org/10.3390/ANTIOX10050745
Luo Y, Li J, Wang B et al (2021) Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model. J Bioenerg Biomembr 53.  https://doi.org/10.1007/s10863-021-09889-1
Li S, Liang F, Kwan K et al (2018) Identification of ethyl pyruvate as a NLRP3 inflammasome inhibitor that preserves mitochondrial integrity. Mol Med 24.  https://doi.org/10.1186/s10020-018-0006-9
Xue J, Suarez JS, Minaai M et al (2021) HMGB1 as a therapeutic target in disease. J Cell Physiol 236:3406–3419
pubmed: 33107103 doi: 10.1002/jcp.30125
Aulin C, Lassacher T, Palmblad K, Erlandsson Harris H (2020) Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthr Cartil 28:698–707. https://doi.org/10.1016/j.joca.2020.01.003
doi: 10.1016/j.joca.2020.01.003
Schelbergen RF, Geven EJ, Van Den Bosch MHJ et al (2015) Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann Rheum Dis 74:2254–2258. https://doi.org/10.1136/annrheumdis-2014-206517
doi: 10.1136/annrheumdis-2014-206517 pubmed: 25969431
Van Den Bosch MH, Blom AB, Schelbergen RF et al (2016) Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the M1 macrophages of human osteoarthritic synovium. J Rheumatol 43:1874–1884. https://doi.org/10.3899/jrheum.160270
doi: 10.3899/jrheum.160270 pubmed: 27481901
van den Bosch MHJ (2019) Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin Exp Immunol 195:153–166
pubmed: 30421798 doi: 10.1111/cei.13237
Cremers NAJ, van den Bosch MHJ, van Dalen S et al (2017) S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis. Arthritis Res Ther 19.  https://doi.org/10.1186/s13075-017-1426-6
Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781. https://doi.org/10.1038/nm.4324
doi: 10.1038/nm.4324 pubmed: 28436958 pmcid: 5785239
Bay-Jensen AC, Mobasheri A, Thudium CS et al (2022) Blood and urine biomarkers in osteoarthritis - an update on cartilage associated type II collagen and aggrecan markers. Curr Opin Rheumatol 34:54–60. https://doi.org/10.1097/BOR.0000000000000845
doi: 10.1097/BOR.0000000000000845 pubmed: 34652292
Kraus VB, Collins JE, Hargrove D et al (2017) Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 76:186–195. https://doi.org/10.1136/ANNRHEUMDIS-2016-209252
doi: 10.1136/ANNRHEUMDIS-2016-209252 pubmed: 27296323
Luo Y, He Y, Reker D et al (2018) A novel high sensitivity type II collagen blood-based biomarker, PRO-C2, for assessment of cartilage formation. Int J Mol Sci 19.  https://doi.org/10.3390/IJMS19113485
Siebuhr AS, Bay-Jensen AC, Leeming DJ et al (2013) Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res Ther 15.  https://doi.org/10.1186/AR4266
Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237. https://doi.org/10.1111/J.1749-6632.2009.05240.X
doi: 10.1111/J.1749-6632.2009.05240.X pubmed: 20392241
Huebner JL, Bay-Jensen AC, Huffman KM et al (2014) Alpha C-telopeptide of type I collagen is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis. Arthritis Rheumatol (Hoboken, NJ) 66:2440–2449. https://doi.org/10.1002/ART.38739
doi: 10.1002/ART.38739
Engbersen M, Huang ZKV (2016) Bone biomarkers related to osteoarthritis. In: Preedy V (ed) Biomarkers in disease: methods, discoveries and applications. Dordrecht
Haraden CA, Huebner JL, Hsueh MF et al (2019) Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation. Arthritis Res Ther 21.  https://doi.org/10.1186/S13075-019-1923-X
Hsueh MF, Zhang X, Wellman SS et al (2021) Synergistic roles of macrophages and neutrophils in osteoarthritis progression. Arthritis Rheumatol (Hoboken, NJ) 73:89–99. https://doi.org/10.1002/ART.41486
doi: 10.1002/ART.41486
Sunahori K, Yamamura M, Yamana J et al (2006) The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther 8.  https://doi.org/10.1186/AR1939
Van Lent PLEM, Blom AB, Schelbergen RFP et al (2012) Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum 64:1466–1476. https://doi.org/10.1002/ART.34315
doi: 10.1002/ART.34315 pubmed: 22143922
Swindell WR, Johnston A, Xing X et al (2013) Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation. Sci Rep 3.  https://doi.org/10.1038/SREP01215
Gerss J, Roth J, Holzinger D et al (2012) Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann Rheum Dis 71:1991–1997. https://doi.org/10.1136/ANNRHEUMDIS-2012-201329
doi: 10.1136/ANNRHEUMDIS-2012-201329 pubmed: 22689317
Choi IY, Gerlag DM, Herenius MJ et al (2015) MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis. Ann Rheum Dis 74:499–505. https://doi.org/10.1136/ANNRHEUMDIS-2013-203923
doi: 10.1136/ANNRHEUMDIS-2013-203923 pubmed: 24297376
Holzinger D, Nippe N, Vogl T et al (2014) Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol (Hoboken, NJ) 66:1327–1339. https://doi.org/10.1002/ART.38369
doi: 10.1002/ART.38369

Auteurs

Francesca Motta (F)

Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.

Elisa Barone (E)

Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.

Antonio Sica (A)

Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy.

Carlo Selmi (C)

Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. carlo.selmi@hunimed.eu.
Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. carlo.selmi@hunimed.eu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH