Simulation of febuxostat pharmacokinetics in healthy subjects and patients with impaired kidney function using physiologically based pharmacokinetic modeling.
febuxostat
gout
kidney impairment
physiologically based pharmacokinetic model
plasma concentration
Journal
Biopharmaceutics & drug disposition
ISSN: 1099-081X
Titre abrégé: Biopharm Drug Dispos
Pays: England
ID NLM: 7911226
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
revised:
08
05
2022
received:
17
01
2022
accepted:
03
06
2022
pubmed:
25
6
2022
medline:
31
8
2022
entrez:
24
6
2022
Statut:
ppublish
Résumé
Febuxostat is recommended by the American College of Rheumatology Gout Management Guidelines as a first-line therapy for lowering the level of urate in patients with gout. At present, this drug is being prescribed mainly based on the clinical experience of doctors. The potential effects of clinical and demographic variables on the bioavailability and therapeutic effectiveness of febuxostat are not being considered. In this study a physiologically based pharmacokinetic (PBPK) model of febuxostat was developed, thereby providing a theoretical basis for the individualized dosing of this drug in gout patients. The plasma concentration-time profiles corresponding to healthy subjects and gout patients with normal kidney function were simulated and validated; then, the model was used to predict the pharmacokinetic (PK) data of the drug in gout patients suffering from varying degrees of impaired kidney function. The error values (the predicted value/observed value) were used to validate the simulated PK parameters predicted by the PBPK model, including the area under the plasma concentration-time curve, the maximum plasma concentration, and time to maximum plasma concentration. Considering that to all error fold changes were smaller than 2, the PBPK model was. In subjects suffering from mild kidney impairment, moderate kidney impairment, severe kidney impairment, and endstage kidney disease (ESRD), the predicted AUC
Substances chimiques
Gout Suppressants
0
Febuxostat
101V0R1N2E
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
140-151Subventions
Organisme : Medical Science and Technology Project of Zhejiang Province
ID : 2022KY811
Organisme : Clinical Research Fund Project of Zhejiang Medical Association
ID : 2020ZYC-B21
Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Bardin, T., & Richette, P. (2019). The role of febuxostat in gout. Current Opinion in Rheumatology, 31(2), 152-158.
Becker, M. A., Schumacher, H. R., Wortmann, R. L., MacDonald, P. A., Eustace, D., Palo, W. A., Streit, J., & Joseph-Ridge, N. (2005). Febuxostat compared with allopurinol in patients with hyperuricemia and gout. New England Journal of Medicine, 353(23), 2450-2461.
Block, G. A., Bone, H. G., Fang, L., Lee, E., & Padhi, D. (2012). A single-dose study of denosumab in patients with various degrees of renal impairment. Journal of Bone and Mineral Research, 27(7), 1471-1479.
Bouzom, F., Ball, K., Perdaems, N., & Walther, B. (2012). Physiologically based pharmacokinetic (PBPK) modelling tools: How to fit with our needs? Biopharmaceutics & Drug Disposition, 33(2), 55-71.
Chen, Y., Zhao, K., Liu, F., Xie, Q., Zhong, Z., Miao, M., Liu, X., & Liu, L. (2016). Prediction of deoxypodophyllotoxin disposition in mouse, rat, monkey, and dog by physiologically based pharmacokinetic model and the extrapolation to human. Frontiers in Pharmacology, 7, 488. https://doi.org/10.3389/fphar.2016.00488
Clark, N. P., Hoang, K., Delate, T., Horn, J. R., & Witt, D. M. (2018). Warfarin interaction with hepatic cytochrome P-450 enzyme-inducing anticonvulsants. Clinical and Applied Thrombosis, 24(1), 172-178.
Fields, T. R. (2019). The challenges of approaching and managing gout. Rheumatic Disease Clinics of North America, 45(1), 145-157.
FitzGerald, J. D., Dalbeth, N., Mikuls, T., Brignardello-Petersen, R., Guyatt, G., Abeles, A. M., Gelber, A. C., Harrold, L. R., Khanna, D., King, C., Levy, G., Libbey, C., Mount, D., Pillinger, M. H., Rosenthal, A., Singh, J. A., Sims, J. E., Smith, B. J., Wenger, N. S., … Neogi, T. (2020). American College of Rheumatology guideline for the management of gout. Arthritis Care & Research (Hoboken), 72(6), 744-760.
Hosoya, T., & Ohno, I. (2011). A repeated oral administration study of febuxostat (TMX-67), a non-purine-selective inhibitor of xanthine oxidase, in patients with impaired renal function in Japan: Pharmacokinetic and pharmacodynamic study. Journal of Clinical Rheumatology, 17(4 Suppl 2), S27-S34.
Jin, Y. W., & Ma, Y. M. (2014). Progress in methodology of establishing physiologically based pharmacokinetic models. Yao Xue Xue Bao, 49(1), 16-22.
Kamel, B., Graham, G. G., Williams, K. M., Pile, K. D., & Day, R. O. (2017). Clinical pharmacokinetics and pharmacodynamics of febuxostat. Clinical Pharmacokinetics, 56(5), 459-475.
Kaur, N., Narang, A., & Bansal, A. K. (2018). Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. European Journal of Pharmaceutics and Biopharmaceutics, 129, 222-246. https://doi.org/10.1016/j.ejpb.2018.05.024
Kuepfer, L., Niederalt, C., Wendl, T., Schlender, J., Willmann, S., Lippert, J., Block, M., Eissing, T., & Teutonico, D. (2016). Applied concepts in PBPK modeling: How to build a PBPK/PD model. CPT: Pharmacometrics & Systems Pharmacology, 5(10), 516-531.
Lukacova, V., Parrott, N., Lave, T., Fraczkiewicz, G., Bolger, M., & Woltosz, W. General approach to calculation of tissue: Plasma partition coefficients for physiologically based pharmacokinetic (PBPK) modeling. In AAPS national annual meeting and exposition, 2008, Atlanta, GA.
Luo, Z., Nan, F., Miao, J., Chen, Z., Li, M., & Liang, M. (2016). Pharmacokinetics and bioequivalence of two formulations of febuxostat 40-Mg and 80-Mg tablets: A randomized, open-label, 4-way crossover study in healthy Chinese male volunteers. PLoS One, 11(3), e0150661. https://doi.org/10.1371/journal.pone.0150661
Mayer, M. D., Khosravan, R., Vernillet, L., Wu, J. T., Joseph-Ridge, N., & Mulford, D. J. (2005). Pharmacokinetics and pharmacodynamics of febuxostat, a new non-purine selective inhibitor of xanthine oxidase in subjects with renal impairment. American Journal of Therapeutics, 12(1), 22-34.
Pathmanathan, K., Robinson, P. C., Hill, C., & Keen, H. (2021). The prevalence of gout and hyperuricaemia in Australia: An updated systematic review. Seminars in Arthritis and Rheumatism, 51(1), 121-128.
Robinson, P. C., & Stamp, L. K. (2016). The management of gout: Much has changed. Australian Family Physician, 45(5), 299-302.
Sager, J. E., Yu, J., Ragueneau-Majlessi, I., & Isoherranen, N. (2015). Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: A systematic review of published models, applications, and model verification. Drug Metabolism & Disposition, 43(11), 1823-1837.
Saito, H. (2010). Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: Pharmacological and toxicological implications. Pharmacology & Therapeutics, 125(1), 79-91.
Sayama, H., Takubo, H., Komura, H., Kogayu, M., & Iwaki, M. (2014). Application of a physiologically based pharmacokinetic model informed by a top-down approach for the prediction of pharmacokinetics in chronic kidney disease patients. The AAPS Journal, 16(5), 1018-1028.
Stader, F., Kinvig, H., Penny, M. A., Battegay, M., Siccardi, M., & Marzolini, C. (2020). Physiologically based pharmacokinetic modelling to identify pharmacokinetic parameters driving drug exposure changes in the elderly. Clinical Pharmacokinetics, 59(3), 383-401.
Tan, Y. M., Chan, M., Chukwudebe, A., Domoradzki, J., Fisher, J., Hack, C. E., Hinderliter, P., Hirasawa, K., Leonard, J., Lumen, A., Paini, A., Qian, H., Ruiz, P., Wambaugh, J., Zhang, F., & Embry, M. (2020). PBPK model reporting template for chemical risk assessment applications. Regulatory Toxicology and Pharmacology, 115, 104691. https://doi.org/10.1016/j.yrtph.2020.104691
Utembe, W., Clewell, H., Sanabria, N., Doganis, P., & Gulumian, M. (2020). Current approaches and techniques in physiologically based pharmacokinetic (PBPK) modelling of nanomaterials. Nanomaterials (Basel), 10(7). https://doi.org/10.3390/nano10071267
Verscheijden, L. F. M., Koenderink, J. B., Johnson, T. N., de Wildt, S. N., & Russel, F. G. (2020). Physiologically-based pharmacokinetic models for children: Starting to reach maturation? Pharmacology & Therapeutics, 211, 107541. https://doi.org/10.1016/j.pharmthera.2020.107541
Xu, Y., Chen, J., Yang, D., Hu, Y., Hu, X., Jiang, B., Ruan, Z., & Lou, H. (2021). Development of LC-MS/MS determination method and backpropagation artificial neural networks pharmacokinetic model of febuxostat in healthy subjects. Journal of Clinical Pharmacy and Therapeutics, 46(2), 333-342.
Yee, K. L., Li, M., Cabalu, T., Sahasrabudhe, V., Lin, J., Zhao, P., & Jadhav, P. (2018). Evaluation of model-based prediction of pharmacokinetics in the renal impairment population. The Journal of Clinical Pharmacology, 58(3), 364-376.
Zhang, M., Di, X., Xu, L., Xu, J., Yang, Y., Jiang, N., Song, L., & Xu, X. (2014). Pharmacokinetics and pharmacodynamics of febuxostat under fasting conditions in healthy individuals. Experimental and Therapeutic Medicine, 7(2), 393-396.
Zhang, X., Yang, Y., Grimstein, M., Fan, J., Grillo, J. A., Huang, S., Zhu, H., & Wang, Y. (2020). Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: An update on the 2018-2019 submissions to the US FDA's office of clinical pharmacology. The Journal of Clinical Pharmacology, 60(Suppl 1), S160-s178.
Zhuang, X., & Lu, C. (2016). PBPK modeling and simulation in drug research and development. Acta Pharmaceutica Sinica B, 6(5), 430-440.