Regional left ventricular endocardial strains estimated from low-dose 4DCT: Comparison with cardiac magnetic resonance feature tracking.
4DCT
LV function
LV myocardial strain
cardiac CT
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
revised:
31
05
2022
received:
17
03
2022
accepted:
10
06
2022
pubmed:
26
6
2022
medline:
15
9
2022
entrez:
25
6
2022
Statut:
ppublish
Résumé
Estimates of regional left ventricular (LV) strains provide additional information to global function parameters such as ejection fraction (EF) and global longitudinal strain (GLS) and are more sensitive in detecting abnormal regional cardiac function. The accurate and reproducible assessment of regional cardiac function has implications in the management of various cardiac diseases such as heart failure, myocardial ischemia, and dyssynchrony. To develop a method that yields highly reproducible, high-resolution estimates of regional endocardial strains from 4DCT images. A method for estimating regional LV endocardial circumferential The 4DCT-derived regional strains correlated well with the CMR-derived regional strains ( We have developed a novel method to estimate high-resolution regional LV endocardial circumferential and longitudinal strains from 4DCT images. Except for the definition of the mitral valve and LV outflow tract planes, the method is completely user independent, thus yielding highly reproducible estimates of endocardial strain. The 4DCT-derived strains correlated well with those estimated using a commercial CMR feature tracking software. The promising results reported in this study highlight the potential utility of 4DCT in the precise assessment of regional cardiac function for the management of cardiac disease.
Sections du résumé
BACKGROUND
BACKGROUND
Estimates of regional left ventricular (LV) strains provide additional information to global function parameters such as ejection fraction (EF) and global longitudinal strain (GLS) and are more sensitive in detecting abnormal regional cardiac function. The accurate and reproducible assessment of regional cardiac function has implications in the management of various cardiac diseases such as heart failure, myocardial ischemia, and dyssynchrony.
PURPOSE
OBJECTIVE
To develop a method that yields highly reproducible, high-resolution estimates of regional endocardial strains from 4DCT images.
METHODS
METHODS
A method for estimating regional LV endocardial circumferential
RESULTS
RESULTS
The 4DCT-derived regional strains correlated well with the CMR-derived regional strains (
CONCLUSIONS
CONCLUSIONS
We have developed a novel method to estimate high-resolution regional LV endocardial circumferential and longitudinal strains from 4DCT images. Except for the definition of the mitral valve and LV outflow tract planes, the method is completely user independent, thus yielding highly reproducible estimates of endocardial strain. The 4DCT-derived strains correlated well with those estimated using a commercial CMR feature tracking software. The promising results reported in this study highlight the potential utility of 4DCT in the precise assessment of regional cardiac function for the management of cardiac disease.
Identifiants
pubmed: 35751864
doi: 10.1002/mp.15818
pmc: PMC9474637
mid: NIHMS1819127
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5841-5854Subventions
Organisme : NIH HHS
ID : F31HL151183
Pays : United States
Organisme : NIH HHS
ID : 1ZIAHL006220
Pays : United States
Organisme : NIH HHS
ID : T32HL105373
Pays : United States
Organisme : NIH HHS
ID : R01HL144678
Pays : United States
Organisme : NHLBI NIH HHS
ID : F31 HL151183
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL105373
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL144678
Pays : United States
Informations de copyright
© 2022 American Association of Physicists in Medicine.
Références
IEEE Trans Biomed Eng. 2015 Feb;62(2):511-21
pubmed: 25252273
J Cardiovasc Magn Reson. 2021 May 20;23(1):55
pubmed: 34011382
Circ Cardiovasc Imaging. 2012 Mar;5(2):243-50
pubmed: 22342945
J Am Coll Cardiol. 2009 Aug 11;54(7):618-24
pubmed: 19660692
Int J Cardiovasc Imaging. 2018 May;34(5):761-775
pubmed: 29181827
J Nucl Med Technol. 2013 Dec;41(4):255-60
pubmed: 24179182
Eur Heart J. 2018 Nov 1;39(41):3715-3723
pubmed: 30165629
Int J Cardiol. 2017 Dec 15;249:461-466
pubmed: 28970037
Funct Imaging Model Heart. 2021 Jun;12738:242-252
pubmed: 35287285
Radiology. 2019 Feb;290(2):329-337
pubmed: 30457480
Neuroimage. 2006 Jul 1;31(3):1116-28
pubmed: 16545965
Circulation. 2002 Oct 1;106(14):1760-3
pubmed: 12356626
J Am Coll Cardiol. 2020 Feb 25;75(7):750-758
pubmed: 32081284
Front Cardiovasc Med. 2020 Mar 05;7:25
pubmed: 32195270
Med Phys. 2022 Apr;49(4):2309-2323
pubmed: 35192200
Struct Heart. 2021;5(4):410-419
pubmed: 34541443
J Am Coll Cardiol. 2001 Mar 1;37(3):726-30
pubmed: 11693743
Radiology. 2021 Jan;298(1):3-17
pubmed: 33201793
JACC Cardiovasc Imaging. 2021 Dec;14(12):2369-2383
pubmed: 34419391
Curr Cardiol Rep. 2021 Feb 16;23(3):18
pubmed: 33594493
J Cardiovasc Magn Reson. 2009 Dec 21;11:55
pubmed: 20025732
JAMA Cardiol. 2019 Oct 1;4(10):1007-1018
pubmed: 31433450
J Cardiovasc Comput Tomogr. 2018 Mar - Apr;12(2):139-148
pubmed: 29402736
JACC Cardiovasc Imaging. 2018 Feb;11(2 Pt 1):260-274
pubmed: 29413646
JACC Cardiovasc Imaging. 2018 Jan;11(1):15-24
pubmed: 28528147
Sci Rep. 2021 Apr 22;11(1):8793
pubmed: 33888835
Int J Cardiovasc Imaging. 2018 Aug;34(8):1277-1286
pubmed: 29536325
Eur Heart J. 2009 Jun;30(12):1467-76
pubmed: 19351689
Int J Cardiovasc Imaging. 2020 Jan;36(1):149-159
pubmed: 31538258
Physiol Rep. 2016 Dec;4(24):
pubmed: 28039400
Med Phys. 2022 Jul;49(7):4404-4418
pubmed: 35588288
JACC Cardiovasc Imaging. 2018 Jan;11(1):25-34
pubmed: 28528162
Radiology. 2013 Apr;267(1):76-85
pubmed: 23340461
Med Image Anal. 2008 Feb;12(1):69-85
pubmed: 18234539
Circ Cardiovasc Imaging. 2017 Jul;10(7):
pubmed: 28701530
J Cardiovasc Comput Tomogr. 2020 May - Jun;14(3):240-245
pubmed: 31812459
N Engl J Med. 2020 Apr 9;382(15):1395-1407
pubmed: 32227755
IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2262-75
pubmed: 20975122
World J Cardiol. 2017 Apr 26;9(4):312-319
pubmed: 28515849
J Med Imaging (Bellingham). 2019 Oct;6(4):046002
pubmed: 31737745
J Cardiovasc Magn Reson. 2007;9(5):777-83
pubmed: 17891615
Quant Imaging Med Surg. 2021 Apr;11(4):1421-1436
pubmed: 33816179
J Am Soc Echocardiogr. 2010 Oct;23(10):1019-24
pubmed: 20810243
IEEE Trans Med Imaging. 2007 Sep;26(9):1136-53
pubmed: 17896588
Invest Radiol. 2020 Jan;55(1):8-19
pubmed: 31567618
Int J Cardiovasc Imaging. 2016 May;32(5):817-23
pubmed: 26706935
Circulation. 2002 Jan 29;105(4):539-42
pubmed: 11815441
Nat Rev Cardiol. 2015 Jul;12(7):426-40
pubmed: 25917151
J Med Imaging (Bellingham). 2019 Oct;6(4):045001
pubmed: 31824981
J Cardiovasc Comput Tomogr. 2018 Sep - Oct;12(5):372-378
pubmed: 29784623
Med Phys. 2016 May;43(5):2399
pubmed: 27147351