Discovery and validation of a transcriptional signature identifying homologous recombination-deficient breast, endometrial and ovarian cancers.
Journal
British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
01
03
2022
accepted:
15
06
2022
revised:
03
06
2022
pubmed:
26
6
2022
medline:
16
9
2022
entrez:
25
6
2022
Statut:
ppublish
Résumé
Molecular alterations leading to homologous recombination deficiency (HRD) are heterogeneous. We aimed to identify a transcriptional profile shared by endometrial (UCEC), breast (BRCA) and ovarian (OV) cancers with HRD. Genes differentially expressed with HRD genomic score (continuous gHRD score) in UCEC/BRCA/OV were identified using edgeR, and used to train a RNAseq score (ridge-regression model) predictive of the gHRD score (PanCanAtlas, N = 1684 samples). The RNAseq score was applied in independent gynaecological datasets (CARPEM/CPTAC/SCAN/TCGA, N = 4038 samples). Validations used ROC curves, linear regressions and Pearson correlations. Overall survival (OS) analyses used Kaplan-Meier curves and Cox models. In total, 656 genes were commonly up/downregulated with gHRD score in UCEC/BRCA/OV. Upregulated genes were enriched for nuclear/chromatin/DNA-repair processes, while downregulated genes for cytoskeleton (gene ontologies). The RNAseq score correlated with gHRD score in independent gynaecological cancers (R² = 0.4-0.7, Pearson correlation = 0.64-0.86, all P < 10 UCEC/BRCA/OV with HRD-associated genomic scars share a common transcriptional profile. RNAseq signatures might be relevant for identifying HRD-gynaecological cancers, for prognostication and for therapeutic decision.
Sections du résumé
BACKGROUND
Molecular alterations leading to homologous recombination deficiency (HRD) are heterogeneous. We aimed to identify a transcriptional profile shared by endometrial (UCEC), breast (BRCA) and ovarian (OV) cancers with HRD.
METHODS
Genes differentially expressed with HRD genomic score (continuous gHRD score) in UCEC/BRCA/OV were identified using edgeR, and used to train a RNAseq score (ridge-regression model) predictive of the gHRD score (PanCanAtlas, N = 1684 samples). The RNAseq score was applied in independent gynaecological datasets (CARPEM/CPTAC/SCAN/TCGA, N = 4038 samples). Validations used ROC curves, linear regressions and Pearson correlations. Overall survival (OS) analyses used Kaplan-Meier curves and Cox models.
RESULTS
In total, 656 genes were commonly up/downregulated with gHRD score in UCEC/BRCA/OV. Upregulated genes were enriched for nuclear/chromatin/DNA-repair processes, while downregulated genes for cytoskeleton (gene ontologies). The RNAseq score correlated with gHRD score in independent gynaecological cancers (R² = 0.4-0.7, Pearson correlation = 0.64-0.86, all P < 10
CONCLUSIONS
UCEC/BRCA/OV with HRD-associated genomic scars share a common transcriptional profile. RNAseq signatures might be relevant for identifying HRD-gynaecological cancers, for prognostication and for therapeutic decision.
Identifiants
pubmed: 35752712
doi: 10.1038/s41416-022-01900-9
pii: 10.1038/s41416-022-01900-9
pmc: PMC9470569
doi:
Substances chimiques
BRCA1 Protein
0
BRCA2 Protein
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1123-1132Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, et al. Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–54.e6.
doi: 10.1016/j.celrep.2018.03.076
pubmed: 29617664
pmcid: 5961503
Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16:475.
doi: 10.1186/s13058-014-0475-x
pubmed: 25475740
pmcid: 4308910
Watkins JA, Irshad S, Grigoriadis A, Tutt AN. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res. 2014;16:211.
doi: 10.1186/bcr3670
pubmed: 25093514
pmcid: 4053155
de Jonge MM, Auguste A, van Wijk LM, Schouten PC, Meijers M, ter Haar NT, et al. Frequent homologous recombination deficiency in high-grade endometrial carcinomas. Clin Cancer Res. 2019;25:1087–97.
doi: 10.1158/1078-0432.CCR-18-1443
pubmed: 30413523
Siedel JH, Ring KL, Hu W, Dood RL, Wang Y, Baggerly K, et al. Clinical significance of homologous recombination deficiency score testing in endometrial Cancer. Gynecol Oncol. 2021;160:777–85.
doi: 10.1016/j.ygyno.2020.12.010
pubmed: 33563487
pmcid: 8538374
Sokol ES, Pavlick D, Khiabanian H, Frampton GM, Ross JS, Gregg JP, et al. Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precision Oncol. 2020;4:442–65.
Jones NL, Xiu J, Reddy SK, Burke WM, Tergas AI, Wright JD, et al. Identification of potential therapeutic targets by molecular profiling of 628 cases of uterine serous carcinoma. Gynecol Oncol. 2015;138:620–6.
doi: 10.1016/j.ygyno.2015.06.034
pubmed: 26123645
Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med. 2018;24:628–37.
doi: 10.1038/s41591-018-0009-7
pubmed: 29713086
pmcid: 6372067
Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.
doi: 10.1158/1078-0432.CCR-15-2477
pubmed: 26957554
pmcid: 6773427
Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl J Med 2017;377:523–33.
doi: 10.1056/NEJMoa1706450
pubmed: 28578601
Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl J Med. 2019;381:2416–28.
doi: 10.1056/NEJMoa1911361
pubmed: 31851799
González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl J Med. 2019;381:2391–402.
doi: 10.1056/NEJMoa1910962
pubmed: 31562799
Hoppe MM, Sundar R, Tan DSP, Jeyasekharan AD. Biomarkers for homologous recombination deficiency in cancer. JNCI: J Natl Cancer Inst. 2018;110:704–13.
doi: 10.1093/jnci/djy085
pubmed: 29788099
Eccles DM, Mitchell G, Monteiro ANA, Schmutzler R, Couch FJ, Spurdle AB, et al. BRCA1 and BRCA2 genetic testing—pitfalls and recommendations for managing variants of uncertain clinical significance. Ann Oncol. 2015;26:2057–65.
doi: 10.1093/annonc/mdv278
pubmed: 26153499
pmcid: 5006185
Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451:1116–20.
doi: 10.1038/nature06633
pubmed: 18264087
pmcid: 2577037
Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 2011;20:797–809.
doi: 10.1016/j.ccr.2011.11.014
pubmed: 22172724
Labidi-Galy SI, Olivier T, Rodrigues M, Ferraioli D, Derbel O, Bodmer A, et al. Location of mutation in BRCA2 gene and survival in patients with ovarian cancer. Clin Cancer Res. 2018;24:326–33.
doi: 10.1158/1078-0432.CCR-17-2136
pubmed: 29084914
Sztupinszki Z, Diossy M, Börcsök J, Prosz A, Cornelius N, Kjeldsen MK, et al. Comparative assessment of diagnostic homologous recombination deficiency associated mutational signatures in ovarian cancer. Clin Cancer Res. 2021;27:5681–87.
Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:1949–61.
doi: 10.1016/S0140-6736(17)32440-6
pubmed: 28916367
pmcid: 5901715
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020;31:1606–22.
doi: 10.1016/j.annonc.2020.08.2102
pubmed: 33004253
Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020;10:1475–88.
doi: 10.1158/2159-8290.CD-19-1485
pubmed: 32699032
pmcid: 7611203
Jazaeri AA, Yee CJ, Sotiriou C, Brantley KR, Boyd J, Liu ET. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst. 2002;94:990–1000.
doi: 10.1093/jnci/94.13.990
pubmed: 12096084
Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. JCO. 2010;28:3555–61.
doi: 10.1200/JCO.2009.27.5719
Severson TM, Wolf DM, Yau C, Peeters J, Wehkam D, Schouten PC, et al. The BRCA1ness signature is associated significantly with response to PARP inhibitor treatment versus control in the I-SPY 2 randomized neoadjuvant setting. Breast Cancer Res. 2017;19:99.
doi: 10.1186/s13058-017-0861-2
pubmed: 28851423
pmcid: 5574249
Peng G, Chun-Jen Lin C, Mo W, Dai H, Park YY, Kim SM, et al. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun. 2014;5:3361.
doi: 10.1038/ncomms4361
pubmed: 24553445
Clinical Proteomic Tumor Analysis Consortium (CPTAC) | NCI Genomic Data Commons [Internet]. [cité 24 août 2021]. Disponible sur: https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/clinical-proteomic-tumor-analysis-consortium-cptac
Beinse G, Belda MALF, Just PA, Bekmezian N, Koual M, Garinet S, et al. Development and validation of a RNAseq signature for prognostic stratification in endometrial cancer. Gynecologic Oncol. 2022. Disponible sur: https://www.gynecologiconcology-online.net/article/S0090-8258(22)00006-3/fulltext
Saal LH, Vallon-Christersson J, Häkkinen J, Hegardt C, Grabau D, Winter C, et al. The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med. 2015;7:20.
doi: 10.1186/s13073-015-0131-9
pubmed: 25722745
pmcid: 4341872
Repository [Internet]. [cité 24 août 2021]. Disponible sur: https://portal.gdc.cancer.gov/repository
GEO Accession viewer [Internet]. [cité 24 août 2021]. Disponible sur: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
Kommoss S, McConechy MK, Kommoss F, Leung S, Bunz A, Magrill J, et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann Oncol. 2018;29:1180–8.
doi: 10.1093/annonc/mdy058
pubmed: 29432521
Publication of the WHO Classification of Tumours, 5th Edition, Vol. 4: Female Genital Tumours – IARC [Internet]. [cité 4 août 2021]. Disponible sur: https://www.iarc.who.int/news-events/publication-of-the-who-classification-of-tumours-5th-edition-volume-4-female-genital-tumours/
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
doi: 10.14806/ej.17.1.200
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
doi: 10.1093/bioinformatics/btu638
pubmed: 25260700
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
doi: 10.1093/bioinformatics/btp616
pubmed: 19910308
EaCoN [Internet]. Gustave Roussy; 2021 [cité 24 août 2021]. Disponible sur: https://github.com/gustaveroussy/EaCoN
Loo PV, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA. 2010;107:16910–5.
doi: 10.1073/pnas.1009843107
pubmed: 20837533
pmcid: 2947907
Sztupinszki Z, Diossy M, Krzystanek M, Reiniger L, Csabai I, Favero F, et al. Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer. npj Breast Cancer. 2018;4:1–4.
doi: 10.1038/s41523-018-0066-6
Brionne A, Juanchich A, Hennequet-Antier C. ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity. BioData Min. 2019;12:16.
doi: 10.1186/s13040-019-0204-1
pubmed: 31406507
pmcid: 6685253
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Soft. 2010;33. Disponible sur: http://www.jstatsoft.org/v33/i01/
Ballman KV. Biomarker: predictive or prognostic? JCO. 2015;33:3968–71.
doi: 10.1200/JCO.2015.63.3651
Martens EP, Boer A, de, Pestman WR, Belitser SV, Stricker BHC, Klungel OH. Comparing treatment effects after adjustment with multivariable Cox proportional hazards regression and propensity score methods. Pharmacoepidemiol Drug Saf. 2008;17:1–8.
doi: 10.1002/pds.1520
pubmed: 17960554
Park Y, Chui MH, Suryo Rahmanto Y, Yu ZC, Shamanna RA, Bellani MA, et al. Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP inhibitor therapy. Clin Cancer Res. 2019;25:5584–94.
doi: 10.1158/1078-0432.CCR-18-4222
pubmed: 31196855
pmcid: 7272114
Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC, et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med. 2010;2:53ra75.
doi: 10.1126/scitranslmed.3001538
pubmed: 20944090
Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562:217–22.
doi: 10.1038/s41586-018-0461-z
pubmed: 30209399
pmcid: 6181777
Philip CA, Laskov I, Beauchamp MC, Marques M, Amin O, Bitharas J, et al. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cell lines to PARP inhibitors. BMC Cancer. 2017;17:638.
doi: 10.1186/s12885-017-3639-0
pubmed: 28886696
pmcid: 5591502
Romero I, Rubio MJ, Medina M, Matias-Guiu X, Santacana M, Schoenenberger JA, et al. An olaparib window-of-opportunity trial in patients with early-stage endometrial carcinoma: POLEN study. Gynecol Oncol. 2020;159:721–31.
doi: 10.1016/j.ygyno.2020.09.013
pubmed: 32988624
Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep. 2020;10:2757.
doi: 10.1038/s41598-020-59671-3
pubmed: 32066851
pmcid: 7026096
Blanc-Durand F, Yaniz E, Genestie C, Rouleau E, Berton D, Lortholary A, et al. Evaluation of a RAD51 functional assay in advanced ovarian cancer, a GINECO/GINEGEPS study. JCO. 2021;39:5513–5513.
doi: 10.1200/JCO.2021.39.15_suppl.5513
Patel JN, Braicu I, Timms KM, Solimeno C, Tshiaba P, Reid J, et al. Characterisation of homologous recombination deficiency in paired primary and recurrent high-grade serous ovarian cancer. Br J Cancer. 2018;119:1060–6.
doi: 10.1038/s41416-018-0268-6
pubmed: 30318511
pmcid: 6219476