Virus-Mediated Protein Overexpression (VOX) in Monocots to Identify and Functionally Characterize Fungal Effectors.

BSMV Cereals Effectors FoMV Functional genomics VOX Wheat

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 27 6 2022
pubmed: 28 6 2022
medline: 30 6 2022
Statut: ppublish

Résumé

One of the important armories that pathogens utilize to successfully colonize the plants is small secreted effector proteins, which could perform a variety of functions from suppression of plant innate immunity to manipulation of plant physiology in favor of the disease. Plants, on the other hand, evolved disease resistance genes that recognize some of the effectors or avirulence (Avr) proteins. Both, identification of the Avr proteins and understanding of the mechanisms of action of other effectors, are important areas of research in the molecular plant-pathogen interactions field as this knowledge is critical for the development of new effective pathogen control measures. To enable functional analysis of the effectors, it is desirable to be able to overexpress them readily in the host plants. Here we describe detailed experimental protocols for transient effector overexpression in wheat and other monocots using binary Barley stripe mosaic virus (BSMV)- and Foxtail mosaic virus (FoMV)-derived vectors. This functional genomics tool, better known as VOX (Virus-mediated protein OvereXpression), is rapid and relatively simple and inexpensive.

Identifiants

pubmed: 35759193
doi: 10.1007/978-1-0716-2449-4_7
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

93-112

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P016855/1
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28:1–8
pubmed: 26343014
Kaloshian I, Walling LL (2016) Hemipteran and dipteran pests: effectors and plant host immune regulators. J Integr Plant Biol 58:350–361
pubmed: 26467026
Vieira P, Gleason C (2019) Plant-parasitic nematode effectors - insights into their diversity and new tools for their identification. Curr Opin Plant Biol 50:37–43
pubmed: 30921686
Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607
pubmed: 15012275
Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield BD, Wingfield MJ (2017) A plant pathology perspective of fungal genome sequencing. IMA Fungus 8:1–15
pubmed: 28824836 pmcid: 5493528
Stajich JE (2017) Fungal genomes and insights into the evolution of the kingdom. Microbiol Spectr 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0055-2016
Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next-generation sequencing technologies. Curr Protoc Mol Biol 122:e59
pubmed: 29851291 pmcid: 6020069
Li F, Zhao X, Li M, He K, Huang C, Zhou Y, Li Z, Walters JR (2019) Insect genomes: progress and challenges. Insect Mol Biol 28:739–758
pubmed: 31120160
Xu J, Wang N (2019) Where are we going with genomics in plant pathogenic bacteria? Genomics 111:729–736
pubmed: 29678682
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM (2018) Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol Plant Pathol 19:2094–2110
pubmed: 29569316 pmcid: 6638006
Sperschneider J, Dodds PN, Singh KB, Taylor JM (2018) ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. New Phytol 217:1764–1778
pubmed: 29243824
Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545
pubmed: 25923844
Selin C, de Kievit TR, Belmonte MF, Fernando WG (2016) Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front Microbiol 7:600
pubmed: 27199930 pmcid: 4846801
McDonald MC, Solomon PS (2018) Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Curr Opin Microbiol 46:14–18
pubmed: 29452845
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM (2018) The rise and rise of Nicotiana benthamiana: a plant for all reasons. Annu Rev Phytopathol 56:405–426
pubmed: 30149789
De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466
Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus I, Hohn T (1984) Expression of a bacterial gene in plants by using a viral vector. Nature 310:511–514
Hammond-Kosack KE, Staskawicz BJ, Jones JD, Baulcombe DC (1995) Functional expression of a fungal avirulence gene from a modified Potato virus X genome. Mol Plant-Microbe Interact 8:181–185
Lee W-S, Hammond-Kosack KE, Kanyuka K (2012) Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol 160:582–590
pubmed: 22885938 pmcid: 3461540
Franco-Orozco B, Berepiki A, Ruiz O, Gamble L, Griffe LL, Wang S, Birch PRJ, Kanyuka K, Avrova A (2017) A new proteinaceous pathogen-associated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. New Phytol 214:1657–1672
pubmed: 28386988
Bouton C, King RC, Chen H, Azhakanandam K, Bieri S, Hammond-Kosack KE, Kanyuka K (2018) Foxtail mosaic virus: a viral vector for protein expression in cereals. Plant Physiol 177:1352–1367
pubmed: 29880705 pmcid: 6084670
Groszyk J, Kowalczyk M, Yanushevska Y, Stochmal A, Rakoczy-Tro-janowska M, Orczyk W (2017) Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.). PLoS One 12:1–21
Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR (2020) Virus-mediated transient expression techniques enable gene function studies in black-grass. Plant Physiol 183:455–459
pubmed: 32238443 pmcid: 7271810
Upadhyaya NM, Mago R, Panwar V, Hewitt T, Luo M, Chen J, Sperschneider J, Nguyen-Phuc H, Wang A, Ortiz D, Hac L, Bhatt D, Li F, Zhang J, Ayliffe M, Figueroa M, Kanyuka K, Ellis JG, Dodds PN (2021) Genomics accelerated isolation of a new stem rust avirulence gene – wheat resistance gene pair. Nat Plants 7:1220–1228
pubmed: 34294906
Liu N, Xie K, Jia Q, Zhao J, Chen T, Li H, Wei X, Diao X, Hong Y, Liu Y (2016) Foxtail mosaic virus-induced gene silencing in monocot plants. Plant Physiol 171:1801–1807
pubmed: 27225900 pmcid: 4936545
Mei Y, Beernink BM, Ellison EE, Konečná E, Neelakandan AK, Voytas DF, Whitham SA (2019) Protein expression and gene editing in monocots using Foxtail mosaic virus vectors. Plant Direct 3:e00181
pubmed: 31768497 pmcid: 6874699
Huang YW, Chang CY, Hsu YH (2020) Virus-induced gene silencing in Poaceae using a Foxtail mosaic virus vector. Methods Mol Biol 2172:15–25
pubmed: 32557358
Yuan C, Li H, Qin C, Zhang X, Chen Q, Zhang P, Xu X, He M, Zhang X, Tör M, Xue D, Wang H, Jackson S, He Y, Liu Y, Shi N, Hong Y (2020) Foxtail mosaic virus-induced flowering assays in monocot crops. J Exp Bot 71:3012–3023
pubmed: 32061090
Torti S, Schlesier R, Thümmler A, Bartels D, Römer P, Koch B, Werner S, Panwar V, Kanyuka K, Wirén NV, Jones JDG, Hause G, Giritch A, Gleba Y (2021) Transient reprogramming of crop plants for agronomic performance. Nat Plants 7:159–171
pubmed: 33594264
Montenegro Alonso AP, Ali S, Song X, Linning R, Bakkeren G (2020) UhAVR1, an HR-triggering avirulence effector of Ustilago hordei, is secreted via the ER-Golgi pathway, localizes to the cytosol of barley cells during in planta-expression, and contributes to virulence early in infection. J Fungi (Basel) 6:178
Darino M, Chia KS, Marques J, Aleksza D, Soto-Jiménez LM, Saado I, Uhse S, Borg M, Betz R, Bindics J, Zienkiewicz K, Feussner I, Petit-Houdenot Y, Djamei A (2021) Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytol 229:3393–3407
pubmed: 33247447 pmcid: 8126959
Navarrete F, Grujic N, Stirnberg A, Saado I, Aleksza D, Gallei M, Adi H, Alcântara A, Khan M, Bindics J, Trujillo M, Djamei A (2021) The Pleiades are a cluster of fungal effectors that inhibit host defenses. PLoS Pathog 17:e1009641
pubmed: 34166468 pmcid: 8224859
Edwards MC, Bragg J, Jackson AO (2006) Natural resistance mechanisms to viruses in barley. In: Loegenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Berlin, pp 465–501
Ji Q, Yang B, Lee M, Chen Y, Lübberstedt T (2010) Mapping of quantitative trait loci/locus conferring resistance to Foxtail mosaic virus in maize using the intermated B73 × Mo17 population. Plant Breed 129:721–723
Cui Y, Lee MY, Huo N, Bragg J, Yan L, Yuan C, Li C, Holditch SJ, Xie J, Luo MC, Li D, Yu J, Martin J, Schackwitz W, Gu YQ, Vogel JP, Jackson AO, Liu Z, Garvin DF (2012) Fine mapping of the Bsr1 Barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One 7:e38333
pubmed: 22675544 pmcid: 3366947
Yuan C, Li C, Yan L, Jackson AO, Liu Z, Han C, Yu J, Li D (2011) A high throughput Barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6:e26468
pubmed: 22031834 pmcid: 3198768
Koncz C, Schell J (1986) The promoter of T
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832
pubmed: 10890530
Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074
pubmed: 2235490 pmcid: 332407
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345
pubmed: 19363495
Hen-Avivi S, Savin O, Racovita RC, Lee WS, Adamski NM, Malitsky S, Almekias-Siegl E, Levy M, Vautrin S, Bergès H, Friedlander G, Kartvelishvily E, Ben-Zvi G, Alkan N, Uauy C, Kanyuka K, Jetter R, Distelfeld A, Aharoni A (2016) A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28:1440–1460
pubmed: 27225753 pmcid: 4944414
Bradamante G, Mittelsten Scheid O, Incarbone M (2021) Under siege: virus control in plant meristems and progeny. Plant Cell 33:2523–2537
pubmed: 34015140 pmcid: 8408453
Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R, Newell K, Xia X, Bernoux M, Taylor JM, Steffenson B, Jin Y, Zhang P, Kanyuka K, Figueroa M, Ellis JG, Park RF, Dodds PN (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358:1607–1610
pubmed: 29269475

Auteurs

Kostya Kanyuka (K)

Plant Pathology and Entomology, NIAB, Cambridge, UK. kostya.kanyuka@niab.com.
Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK. kostya.kanyuka@niab.com.

Articles similaires

Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Zea mays Triticum China Seasons Crops, Agricultural
Oryza Phylogeny Gene Expression Regulation, Plant Plant Diseases Crops, Agricultural

Classifications MeSH