Delimiting the cryptic diversity and host preferences of Sycophila parasitoid wasps associated with oak galls using phylogenomic data.

Chalcidoidea Cynipidae Cynipini DNA barcoding Eurytomidae UCEs tritrophic interaction ultraconserved elements

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
08 2022
Historique:
revised: 06 06 2022
received: 24 01 2022
accepted: 23 06 2022
pubmed: 29 6 2022
medline: 10 8 2022
entrez: 28 6 2022
Statut: ppublish

Résumé

Cryptic species diversity is a major challenge regarding the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this diversity. One hypothesis is that trait diversity in the gall wasps, including the morphology of the galls they induce, has evolved in response to selection imposed by the parasitoid community, with reciprocal selection driving diversification of the parasitoids. Using a rare, continental-scale data set of Sycophila parasitoid wasps reared from 44 species of cynipid galls from 18 species of oak across the USA, we combined mitochondrial DNA barcodes, ultraconserved elements (UCEs), morphological and natural history data to delimit putative species. Using these results, we generate the first large-scale assessment of ecological specialization and host association in this species-rich group, with implications for evolutionary ecology and biocontrol. We find most Sycophila target specific subsets of available cynipid host galls with similar morphologies, and generally attack larger galls. Our results suggest that parasitoid wasps such as Sycophila have adaptations allowing them to exploit particular host trait combinations, while hosts with contrasting traits are resistant to attack. These findings support the tritrophic niche concept for the structuring of plant-herbivore-parasitoid communities.

Identifiants

pubmed: 35762844
doi: 10.1111/mec.16582
doi:

Banques de données

Dryad
['10.5061/dryad.x0k6djhmb']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4417-4433

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Abe, Y., Melika, G., & Stone, G. N. (2007). The diversity and phylogeography of cynipid gallwasps (Hymenoptera: Cynipidae) of the oriental and eastern palearctic regions, and their associated communities. Oriental Insects, 41(1), 169-212. https://doi.org/10.1080/00305316.2007.10417504
Abrahamson, W. G., & Weis, A. E. (1997). Evolutionary ecology across three trophic levels: Goldenrods, gallmakers, and natural enemies (Vol. 29). Princeton University Press.
Ács, Z., Challis, R. J., Bihari, P., Blaxter, M., Hayward, A., Melika, G., Csóka, G., Pénzes, Z., Pujade-Villar, J., Nieves-Aldrey, J.-L., Schonrogge, K., & Stone, G. N. (2010). Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palaearctic. Molecular Phylogenetics and Evolution, 55(1), 210-225. https://doi.org/10.1016/j.ympev.2009.12.004
Andermann, T., Fernandes, A. M., Olsson, U., Topel, M., Pfeil, B., Oxelman, B., Aleixo, A., Faircloth, B. C., & Antonelli, A. (2019). Allele phasing greatly improves the phylogenetic utility of ultraconserved elements. Systematic Biology, 68(1), 32-46. https://doi.org/10.1093/sysbio/syy039
Askew, R. R. (1961). On the biology of the inhabitants of oak galls of Cynipidae (Hymenoptera) in Britain. Transactions of the Society for British Entomology, 14, 237-268.
Askew, R. R. (1965). The biology of the British species of the genus Torymus Dalman (Hymenoptera: Torymidae) associated with galls of Cynipidae (Hymenoptera) on oak, with special reference to alternation of forms. Transactions of the Royal Entomological Society of London, 9, 217-232.
Askew, R. R., Melika, G., Pujade-Villar, J., Schönrogge, K., Stone, G. N., & Nieves-Aldrey, J.-L. (2013). Catalogue of parasitoids and inquilines in cynipid oak galls in the west Palaearctic. Zootaxa, 3643(1), 1-133. https://doi.org/10.11646/zootaxa.3643.1.1
Bailey, R., Schonrogge, K., Cook, J. M., Melika, G., Csóka, G., Thuroczy, C., & Stone, G. N. (2009). Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biology, 7(8), e1000179. https://doi.org/10.1371/journal.pbio.1000179
Balduf, W. V. (1932). Revision of the chalcid files of the tribe Decatomini (Eurytomidae) in America north of Mexico. Proceedings of the United States National Museum, 79, 1-95.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., & Pyshkin, A. V. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021
Blaimer, B. B., Gotzek, D., Brady, S. G., & Buffington, M. L. (2020). Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. BMC Evolutionary Biology, 20(1), 155. https://doi.org/10.1186/s12862-020-01716-2
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Borcard, B., & Legendre, P. (2012). Is the mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology, 93, 1473-1481. https://doi.org/10.1890/11-1737.1
Borowiec, M. L. (2016). AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4, e1660. https://doi.org/10.7717/peerj.1660
Borowiec, M. L. (2019). Spruceup: Fast and flexible identification, visualization, and removal of outliers from large multiple sequence alignments. Journal of Open Source Software, 4(42), 1635. https://doi.org/10.21105/joss.01635
Bouckaert, R. R. (2010). DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics, 26(10), 1372-1373. https://doi.org/10.1093/bioinformatics/btq110
Bouckaert, R. R., & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17(1), 1-11. https://doi.org/10.1186/s12862-017-0890-6
Bouckaert, R. R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Brandão-Dias, P. F. P., Zhang, Y. M., Pirro, S., Vinson, C. C., Weinersmith, K. L., Ward, A. K. G., Forbes, A. A., & Egan, S. P. (2022). Describing biodiversity in the genomics era: A new species of Nearctic Cynipidae gall wasp and its genome. Systematic Entomology, 47, 94-112. https://doi.org/10.1111/syen.12521
Branstetter, M. G., & Longino, J. T. (2019). Ultra-conserved element phylogenomics of New World Ponera (Hymenoptera: Formicidae) illuminates the origin and phylogeographical history of the endemic exotic ant Ponera exotica. Insect Systematics and Diversity, 3(2), 1. https://doi.org/10.1093/isd/ixz001
Branstetter, M. G., Longino, J. T., Ward, P. S., Faircloth, B. C., & Price, S. (2017). Enriching the ant tree of life: Enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera. Methods in Ecology and Evolution, 8(6), 768-776. https://doi.org/10.1111/2041-210x.12742
Buffington, M. L., Forshage, M., Liljeblad, J., Tang, C.-T., & van Noort, S. (2020). World Cynipoidea (Hymenoptera): A key to higher-level groups. Insect Systematics and Diversity, 4(4), 1. https://doi.org/10.1093/isd/ixaa003
Bunnefeld, L., Hearn, J., Stone, G. N., & Lohse, K. (2018). Whole-genome data reveal the complex history of a diverse ecological community. Proceedings of the National Academy of Sciences of the United States of America, 115(28), E6507-E6515. https://doi.org/10.1073/pnas.1800334115
Burks, B. D. (1979). Superfamily Cynipoidea. In K. V. Krombein, P. D. Hurd, Jr., D. R. Smith, & B. D. Burks (Eds.), Catalog of Hymenoptera in America north of Mexico. Vol. 1. Symphyta and Apocrita (pp. 1045-1107). Smithsonian Institution Press.
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4), 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
Cavender-Bares, J. (2019). Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist, 221(2), 669-692. https://doi.org/10.1111/nph.15450
Chambers, E. A., & Hillis, D. M. (2020). The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology, 69(1), 184-193. https://doi.org/10.1371/journal.pone.0011963
Chen, H., Rangasamy, M., Tan, S. Y., Wang, H., & Siegfried, B. D. (2010). Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One, 5(8), e11963.
Claridge, M. F. (1959). A contribution to the biology and taxonomy of the British species of the genus Eudecatoma Ashmead (= Decatoma Auctt. Nec Spinola) (Hym., Eurytomidae). Transactions of the Society for British Entomology, 13(9), 149-168.
Cook, J. M., Rokas, A., Pagel, M., & Stone, G. N. (2002). Evolutionary shifts between host oak sections and host-plant organs in Andricus gallwasps. Evolution, 56(9), 1821-1830.
Davis, M. J., Andersen, J. C., & Elkinton, J. (2018). Identification of the parasitoid community associated with an outbreaking gall wasp, Zapatella davisae, and their relative abundances in New England and Long Island, New York. Ecology and Evolution, 9(1), 19-25. https://doi.org/10.1002/ece3.4543
Deans, A. R., Nastasi, L., & Montelongo, D. C. (2021). Glossary of gall terms V5. https://doi.org/10.26207/22e9-ck06
Dehling, D. M., Jordano, P., Schaefer, H. M., Bohning-Gaese, K., & Schleuning, M. (2015). Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions. Proceedings of the Royal Society B, 283, 20152444. https://doi.org/10.1098/rspb.2015.2444
Dorado, F. J., Pujade-Villar, J., Muñoz-Adalia, E. J., Vinagrero, J. C., Diez-Casero, J. J., & Fernández-Fernández, M. M. (2020). Characterization of native parasitoid community associated with the invasive pest Dryocosmus kuriphilus (Hymenoptera: Cynipidae) in Cantabria (northern Spain). Scandinavian Journal of Forest Research, 35(7), 334-340. https://doi.org/10.1080/02827581.2020.1808055
Driscoe, A. L., Nice, C. C., Busbee, R. W., Hood, G. R., Egan, S. P., & Ott, J. R. (2019). Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Molecular Ecology, 28(18), 4197-4211. https://doi.org/10.1111/mec.15220
Espírito-Santo, M. M., & Fernandes, G. W. (2007). How many species of gall-inducing insects are there on earth, and where are they? Annals of the Entomological Society of America, 100(2), 95-99. https://doi.org/10.1603/0013-8746(2007)100[95:HMSOGI]2.0.CO;2
Ezard, T., Fujisawa, T., & Barraclough, T. G. (2009). SPLITS: Species' limits by threshold statistics. https://rdrr.io/rforge/splits/
Faircloth, B. C. (2013). Illumiprocessor: A trimmomatic wrapper for parallel adapter and quality trimming. https://doi.org/10.6079/J9ILL
Faircloth, B. C. (2015). PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics, 32(5), 786-788. https://doi.org/10.1093/bioinformatics/btv646
Faircloth, B. C., Branstetter, M. G., White, N. D., & Brady, S. G. (2015). Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Molecular Ecology Resources, 15(3), 489-501. /10.1111/1755-0998.12328
Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61(5), 717-726. https://doi.org/10.1093/sysbio/sys004
Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. (2018). Quantifying the unquantifiable: Why Hymenoptera, not coleoptera, is the most speciose animal order. BMC Ecology, 18(1), 21. https://doi.org/10.1186/s12898-018-0176-x
Forbes, A. A., Hall, M. C., Lund, J., Hood, G. R., Izen, R., Egan, S. P., & Ott, J. R. (2016). Parasitoids, hyperparasitoids, and inquilines associated with the sexual and asexual generations of the gall former, Belonocnema treatae (Hymenoptera: Cynipidae). Annals of the Entomological Society of America, 109(1), 49-63. https://doi.org/10.1093/aesa/sav112
Gates, M. W., Zhang, Y. M., & Buffington, M. L. (2020). The great greenbriers gall mystery resolved? New species of Aprostocetus Westwood (Hymenoptera, Eulophidae) gall inducer and two new parasitoids (Hymenoptera, Eurytomidae) associated with smilax L. in southern Florida, USA. Journal of Hymenoptera Research, 80, 71-98. https://doi.org/10.3897/jhr.80.59466
Gil-Tapetado, D., Durán-Montes, P., García-París, M., López-Estrada, E. K., Sánchez-Vialas, A., Jiménez-Ruiz, Y., Gómez, J. F., & Nieves-Aldrey, J. L. (2021). Host specialization is ancestral in Torymus (Hymenoptera, Chalcidoidea) cynipid gall parasitoids. Zoologica Scripta, 51, 91-118. https://doi.org/10.1111/zsc.12515
Glenn, T. C., Nilsen, R. A., Kieran, T. J., Sanders, J. G., Bayona-Vásquez, N. J., Finger, J. W., Pierson, T. W., Bentley, K. E., Hoffberg, S. L., Louha, S., Leon, F. J. G.-D., Portilla, M. A. D. R., Reed, K. D., Anderson, J. L., Meece, J. K., Aggrey, S. E., Rekaya, R., Alabady, M., … Faircloth, B. C. (2019). Adapterama I: Universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ, 7, e7755. https://doi.org/10.7717/peerj.7755
Gómez, J. F., Nieves-Aldrey, J. L., & Stone, G. N. (2013). On the morphology of the terminal-instar larvae of some European species of Sycophila (Hymenoptera: Eurytomidae) parasitoids of gall wasps (Hymenoptera: Cynipidae). Journal of Natural History, 47(47-48), 2937-2960. https://doi.org/10.1080/00222933.2013.791937
Gueuning, M., Frey, J. E., & Praz, C. (2020). Ultraconserved yet informative for species delimitation: Ultraconserved elements resolve long-standing systematic enigma in central European bees. Molecular Ecology, 29(21), 4203-4220. https://doi.org/10.1111/mec.15629
Guillot, G., & Rousset, F. (2013). Dismantling the mantel tests. Methods in Ecology and Evolution, 4, 336-344. https://doi.org/10.1111/2041-210x.12018
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010
Harmon, L. J., & Glor, R. E. (2010). Poor statistical performance of the mantel test in phylogenetic comparative analyses. Evolution, 64, 2173-2178. https://doi.org/10.1111/j.1558-5646.2010.00973.x
Hayward, A., & Stone, G. N. (2005). Oak gall wasp communities: Evolution and ecology. Basic and Applied Ecology, 6(5), 435-443. https://doi.org/10.1016/j.baae.2005.07.003
Hayward, A., & Stone, G. N. (2006). Comparative phylogeography across two trophic levels: The oak gall wasp Andricus kollari and its chalcid parasitoid Megastigmus stigmatizans. Molecular Ecology, 15, 479-489. https://doi.org/10.1111/j.1365-294X.2005.02811.x
Hearn, J., Blaxter, M., Schönrogge, K., Nieves-Aldrey, J.-L., Pujade-Villar, J., Shorthouse, J. D., & Stone, G. N. (2019). Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genetics, 15(11), e1008398. https://doi.org/10.1371/journal.pgen.1008398
Heath, T. A., Huelsenbeck, J. P., & Stadler, T. (2014). The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences of the United States of America, 111(29), E2957-E2966. https://doi.org/10.1073/pnas.1319091111
Heibl, C. (2008). PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. https://rdrr.io/github/fmichonneau/phyloch/
Hipp, A. L., Manos, P. S., Gonzalez-Rodriguez, A., Hahn, M., Kaproth, M., McVay, J. D., Avalos, S. V., & Cavender-Bares, J. (2018). Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist, 217(1), 439-452. https://doi.org/10.1111/nph.14773
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Le, S. V. (2017). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, msx281-msx522. https://doi.org/10.1093/molbev/msx281
Hood, G. R., Forbes, A. A., Powell, T. H., Egan, S. P., Hamerlinck, G., Smith, J. J., & Feder, J. L. (2015). Sequential divergence and the multiplicative origin of community diversity. Proceedings of the National Academy of Sciences of the United States of America, 112(44), E5980-E5989. https://doi.org/10.1073/pnas.1424717112
Hood, G. R., Zhang, L., Hu, E. G., Ott, J. R., & Egan, S. P. (2019). Cascading reproductive isolation: Plant phenology drives temporal isolation among populations of a host-specific herbivore. Evolution, 73(3), 554-568. https://doi.org/10.1111/evo.13683
Ješovnik, A., Sosa-Calvo, J., Lloyd, M. W., Branstetter, M. G., Fernández, F., & Schultz, T. R. (2017). Phylogenomic species delimitation and host-symbiont coevolution in the fungus-farming ant genus Sericomyrmex Mayr (Hymenoptera: Formicidae): Ultraconserved elements (UCEs) resolve a recent radiation. Systematic Entomology, 42(3), 523-542. https://doi.org/10.1111/syen.12228
Jones, G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology, 74(1-2), 447-467. https://doi.org/10.1007/s00285-016-1034-0
Kaartinen, R., Stone, G. N., Hearn, J., Lohse, K., & Roslin, T. (2010). Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecological Entomology, 35(5), 623-638. https://doi.org/10.1111/j.1365-2311.2010.01224.x
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285
Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9(4), 286-298. https://doi.org/10.1093/bib/bbn013
Laliberte, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305. https://doi.org/10.1890/08-2244.1
Lanfear, R., Calcott, B., Kainer, D., Mayer, C., & Stamatakis, A. (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14(1), 1-14. https://doi.org/10.1186/1471-2148-14-82
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772-773. https://doi.org/10.1093/molbev/msw260
Legendre, P., Fortin, M. J., & Borcard, D. (2015). Should the mantel test be used in spatial analysis? Methods in Ecology and Evolution, 6, 1239-1247. https://doi.org/10.1111/2041-210X.12425
Li, Y., Zhou, X., Feng, G., Hu, H., Niu, L., Hebert, P. D., & Huang, D. (2010). COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources, 10(1), 31-40. https://doi.org/10.1111/j.1755-0998.2009.02671.x
Longino, J. T., & Branstetter, M. G. (2021). Integrating UCE phylogenomics with traditional taxonomy reveals a trove of New World Syscia species (Formicidae: Dorylinae). Insect Systematics and Diversity, 5(2), 1. https://doi.org/10.1093/isd/ixab001
Lotfalizadeh, H., Delvare, G., & Rasplus, J. Y. (2008). Sycophila pistacina (Hymenoptera: Eurytomidae): A valid species. European Journal of Entomology, 105(1), 137-147. https://doi.org/10.14411/eje.2008.019
Luo, A., Ling, C., Ho, S. Y. W., & Zhu, C. D. (2018). Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology, 67(5), 830-846. https://doi.org/10.1093/sysbio/syy011
MacEwen, J., Earley, N., & Lalonde, R. (2020). How much does the host matter to the parasitoid? Distribution of Eurytoma (Hymenoptera, Chalcidoidea) species amongst two locally co-occurring gall-inducing hosts in the genus Diplolepis (Hymenoptera, Cynipidae). The Canadian Entomologist, 152(6), 815-822. https://doi.org/10.4039/tce.2020.55
Manos, P. S., & Hipp, A. L. (2021). An updated infrageneric classification of the north American oaks (Quercus subgenus Quercus): Review of the contribution of phylogenomic data to biogeography and species diversity. Forests, 12(6), 786. https://doi.org/10.3390/f12060786
Martinson, E. O., Werren, J. H., & Egan, S. P. (2021). Tissue-specific gene expression shows a cynipid wasp repurposes oak host gene networks to create a complex and novel parasite-specific organ. Molecular Ecology, 31, 3228-3240. https://doi.org/10.1111/mec.16159
Melika, G., Pujade-Villar, J., Abe, Y., Tang, C. T., Nicholls, J., Wachi, N., Ide, T., Yang, M.-M., Pénzes, Z., Csóka, G., & Stone, G. N. (2010). Palaearctic oak gallwasps galling oaks (Quercus) in the section Cerris: Re-appraisal of generic limits, with descriptions of new genera and species (Hymenoptera: Cynipidae: Cynipini). Zootaxa, 2470, 1-79. https://doi.org/10.11646/zootaxa.2470.1.1
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
Nicholls, J. A., Challis, R. J., Mutun, S., & Stone, G. N. (2012). Mitochondrial barcodes are diagnostic of shared refugia but not species in hybridizing oak gallwasps. Molecular Ecology, 21(16), 4051-4062. https://doi.org/10.1111/j.1365-294X.2012.05683.x
Nicholls, J. A., Melika, G., & Stone, G. N. (2017). Sweet tetra-trophic interactions: Multiple evolution of nectar secretion, a defensive extended phenotype in cynipid gall wasps. The American Naturalist, 189(1), 67-77. https://doi.org/10.1086/689399
Nicholls, J. A., Preuss, S., Hayward, A., Melika, G., Csóka, G., Nieves-Aldrey, J.-L., Askew, R. R., Tavakoli, M., Schönrogge, K., & Stone, G. N. (2010). Concordant phylogeography and cryptic speciation in two Western Palaearctic oak gall parasitoid species complexes. Molecular Ecology, 19(3), 592-609. https://doi.org/10.1111/j.1365-294X.2009.04499.x
Nicholls, J. A., Schönrogge, K., Preuss, S., & Stone, G. N. (2018). Partitioning of herbivore hosts across time and food plants promotes diversification in the Megastigmus dorsalis oak gall parasitoid complex. Ecology and Evolution, 8(2), 1300-1315. https://doi.org/10.1002/ece3.3712
Novotny, V., Miller, S. E., Baje, L., Balagawi, S., Basset, Y., Cizek, L., Craft, K. J., Dem, F., Drew, R. A. I., Hulcr, J., Leps, J., Lewis, O. T., Pokon, R., Stewart, A. J. A., Allan Samuelson, G., & Weiblen, G. D. (2010). Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. Journal of Animal Ecology, 79(6), 1193-1203. https://doi.org/10.1111/j.1365-2656.2010.01728.x
Noyes, J. S. (2019). Universal Chalcidoidea database. http://www.nhm.ac.uk/entomology/chalcidoids/index.html
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E, Wagner, H. (2020). Community ecology package (‘vegan’) version 2.5-7. CRAN. https://cran.r-project.org, https://github.com/vegandevs/vegan
Page, A. J., Taylor, B., Delaney, A. J., Soares, J., Seemann, T., Keane, J. A., & Harris, S. R. (2016). SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial genomics, 2(4), e000056. https://doi.org/10.1099/mgen.0.000056
Paradis, E., Blomberg, S., Bolker, B., Brown, J., Claramunt, J., Claude, J., … de Vienne, D. (2021). Analysis of Phylogenetics and Evolution (‘ape’) version 5.5. CRAN. http://ape-package.ird.fr/
Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595-609. https://doi.org/10.1080/10635150600852011
Prebus, M. M. (2021). Phylogenomic species delimitation in the ants of the Temnothorax salvini group (Hymenoptera: Formicidae): An integrative approach. Systematic Entomology, 46(2), 307-326. https://doi.org/10.1111/syen.12463
Price, P. W., Fernandes, G. W., & Waring, G. L. (1987). Adaptive nature of insect galls. Environmental Entomology, 16(1), 15-24. https://doi.org/10.1093/ee/16.1.15
Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: Assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620. https://doi.org/10.1111/1755-0998.13281
Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21(8), 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rabiee, M., & Mirarab, S. (2020). SODA: Multi-locus species delimitation using quartet frequencies. Bioinformatics, 36(24), 5623-5631. https://doi.org/10.1093/bioinformatics/btaa1010
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032
Roberts, D.W. (2019). Ordination and multivariate analysis for ecology (‘labdsv’) version 2.0-1. CRAN. https://cran.r-project.org/web/packages/labdsv/index.html
Rohfritsch, O., & Shorthouse, J. D. (1982). Insect galls. In Molecular biology of plant tumors (pp. 131-152). Elsevier.
Rokas, A., Melika, G., Abe, Y., Nieves-Aldrey, J.-L., Cook, J. M., & Stone, G. N. (2003). Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution, 26(1), 36-45. https://doi.org/10.1016/S1055-7903(02)00329-9
Samacá-Sáenz, E., Egan, S. P., & Zaldívar-Riverón, A. (2020). Species diversity in the braconid wasp genus Allorhogas (Doryctinae) associated with cynipid galls on live oaks (Quercus: Fagaceae) using natural history, phylogenetics, and morphology. Insect Systematics and Diversity, 4(5), 3. https://doi.org/10.1093/isd/ixaa011
Schönrogge, K., Stone, G., & Crawley, M. (1996). Alien herbivores and native parasitoids: Rapid developments and structure of the parasitoid and inquiline complex in an invading gall wasp Andricus quercuscalicis (Hymenoptera: Cynipidae). Ecological Entomology, 21(1), 71-80.
Schwallier, R., Raes, N., de Boer, H. J., Vos, R. A., van Vugt, R. R., & Gravendeel, B. (2016). Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants. Diversity and Distributions, 22(1), 97-110. https://doi.org/10.1111/ddi.12382
Sheikh, S. I., Ward, A. K. G., Zhang, Y. M., Davis, C. K., Zhang, L., Egan, S. P., & Forbes, A. A. (2022). Ormyrus labotus (Hymenoptera: Ormyridae): Another generalist that should not be a generalist is not a generalist. Insect systematics and diversity, 6(1), 8. https://doi.org/10.1093/isd/ixac001
Sinclair, F. H., Stone, G. N., Nicholls, J. A., Cavers, S., Gibbs, M., Butterill, P., Wagner, S., Ducousso, A., Gerber, S., Petit, R. J., & Kremer, A. (2015). Impacts of local adaptation of forest trees on associations with herbivorous insects: Implications for adaptive forest management. Evolutionary Applications, 8(10), 972-987. https://doi.org/10.1111/eva.12329
Smith-Freedman, C. J., Andersen, J. C., Griffin, B. P., Schick, K., & Elkinton, J. S. (2019). Rise and fall of an oak gall wasp (Hymenoptera: Cynipidae) outbreak in Massachusetts. Environmental Entomology, 48(6), 1277-1285. https://doi.org/10.1093/ee/nvz115
Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
Stone, G. N., & Cook, J. M. (1998). The structure of cynipid oak galls patterns in the evolution of an extended phenotype. Proceedings of the Royal Society of London B: Biological Sciences, 265(1400), 979-988. https://doi.org/10.1098/rspb.1998.0387
Stone, G. N., Hernandez-Lopez, A., Nicholls, J. A., Di Pierro, E., Pujade-Villar, J., Melika, G., & Cook, J. M. (2009). Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution, 63(4), 854-869. https://doi.org/10.1111/j.1558-5646.2008.00604.x
Stone, G. N., Lohse, K., Nicholls, J. A., Fuentes-Utrilla, P., Sinclair, F., Schönrogge, K., Csóka, G., Melika, G., Nieves-Aldrey, J. L., Pujade-Villar, J., & Tavakoli, M. (2012). Reconstructing community assembly in time and space reveals enemy escape in a Western palearctic insect community. Current Biology, 22(6), 532-537. https://doi.org/10.1016/j.cub.2012.01.059
Stone, G. N., & Schönrogge, K. (2003). The adaptive significance of insect gall morphology. Trends in Ecology & Evolution, 18(10), 512-522. https://doi.org/10.1016/s0169-5347(03)00247-7
Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences, 114(7), 1607-1612. https://doi.org/10.1073/pnas.1607921114
Tagliacollo, V. A., & Lanfear, R. (2018). Estimating improved partitioning schemes for ultraconserved elements. Molecular Biology and Evolution, 35(7), 1798-1811. https://doi.org/10.1093/molbev/msy069
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
Tang, C.-T., Melika, G., Yang, M.-M., Nicholls, J., & Stone, G. N. (2011). A new genus of oak gallwasps, Cycloneuroterus Melika & Tang, with the description of five new species from Taiwan (Hymenoptera: Cynipidae: Cynipini). Zootaxa, 3008, 33-62. https://doi.org/10.11646/zootaxa.3008.1.2
Walton, W., Stone, G. N., & Lohse, K. (2021). Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Molecular Ecology, 30, 4538-4550. https://doi.org/10.1111/mec.16074
Ward, A. K. G., Bagley, R. K., Egan, S. P., Hood, G. R., Ott, J. R., Prior, K. M., Sheikh, S. I., Weinersmith, K. L., Zhang, L., Zhang, Y. M., & Forbes, A. A. (2022). Speciation in Nearctic oak gall wasps is frequently correlated with changes in host plant, host organ, or both. Evolution In Press. https://doi.org/10.1111/evo.14562
Ward, A. K. G., Khodor, O. S., Egan, S. P., Weinersmith, K. L., & Forbes, A. A. (2019). A keeper of many crypts: A behaviour-manipulating parasite attacks a taxonomically diverse array of oak gall wasp species. Biology Letters, 15(9), 20190428. https://doi.org/10.1098/rsbl.2019.0428
Ward, A. K. G., Sheikh, S. I., & Forbes, A. A. (2020). Diversity, host ranges, and potential drivers of speciation among the inquiline enemies of oak gall wasps (Hymenoptera: Cynipidae). Insect Systematics and Diversity, 4(6), 1-13. https://doi.org/10.1093/isd/ixaa017
Weinersmith, K. L., Forbes, A. A., Ward, A. K. G., Brandão-Dias, P. F. P., Zhang, Y. M., Egan, S. P., & Shi, P. (2020). Arthropod community associated with the asexual generation of Bassettia pallida (Hymenoptera: Cynipidae). Annals of the Entomological Society of America, 113(5), 373-388. https://doi.org/10.1093/aesa/saaa009
Weld, L. H. (1957). Cynipid galls of the Pacific slope. Privately Printed.
Weld, L. H. (1959). Cynipid galls of eastern United States. Privately Printed.
Weld, L. H. (1960). Cynipid galls of the southwest. Privately Printed.
Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854
Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876. https://doi.org/10.1093/bioinformatics/btt499
Zhang, L., Hood, G. R., Ott, J. R., & Egan, S. P. (2019). Temporal isolation between sympatric host plants cascades across multiple trophic levels of host-associated insects. Biology Letters, 15(12), 20190572. https://doi.org/10.1098/rsbl.2019.0572
Zhang, Y. M., Buffington, M. L., Looney, C., Laszlo, Z., Shorthouse, J. D., Ide, T., & Lucky, A. (2020). UCE data reveal multiple origins of rose gallers in North America: Global phylogeny of Diplolepis Geoffroy (Hymenoptera: Cynipidae). Molecular Phylogenetics and Evolution, 153, 106949. https://doi.org/10.1016/j.ympev.2020.106949
Zhang, Y. M., Egan, S. P., Driscoe, A. L., & Ott, J. R. (2021). One hundred and sixty years of taxonomic confusion resolved: Belonocnema (Hymenoptera: Cynipidae: Cynipini) gall wasps associated with live oaks in the USA. Zoological Journal of the Linnean Society, 193(4), 1234-1255. https://doi.org/10.1093/zoolinnean/zlab001
Zhang, Y. M., Gates, M. W., & Shorthouse, J. D. (2014). Testing species limits of Eurytomidae (Hymenoptera) associated with galls induced by Diplolepis (Hymenoptera: Cynipidae) in Canada using an integrative approach. The Canadian Entomologist, 146(3), 321-334. https://doi.org/10.4039/tce.2013.70
Zhang, Y. M., László, Z., Looney, C., Dénes, A.-L., Hanner, R. H., & Shorthouse, J. D. (2019). DNA barcodes reveal inconsistent species boundaries in Diplolepis rose gall wasps and their Periclistus inquilines (Hymenoptera: Cynipidae). The Canadian Entomologist, 151(6), 717-727. https://doi.org/10.4039/tce.2019.59
Zhang, Y. M., Williams, J. L., & Lucky, A. (2019). Understanding UCEs: A comprehensive primer on using ultraconserved elements for arthropod phylogenomics. Insect Systematics and Diversity, 3(5), 3. https://doi.org/10.1093/isd/ixz016

Auteurs

Yuanmeng M Zhang (YM)

Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, District of Columbia, USA.
Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA.

Sofia I Sheikh (SI)

Department of Biology, University of Iowa, Iowa City, Iowa, USA.

Anna K G Ward (AKG)

Department of Biology, University of Iowa, Iowa City, Iowa, USA.

Andrew A Forbes (AA)

Department of Biology, University of Iowa, Iowa City, Iowa, USA.

Kirsten M Prior (KM)

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA.

Graham N Stone (GN)

Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.

Michael W Gates (MW)

Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, District of Columbia, USA.

Scott P Egan (SP)

Department of BioSciences, Rice University, Houston, Texas, USA.

Linyi Zhang (L)

Department of BioSciences, Rice University, Houston, Texas, USA.
Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.

Charles Davis (C)

Department of BioSciences, Rice University, Houston, Texas, USA.
Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA.

Kelly L Weinersmith (KL)

Department of BioSciences, Rice University, Houston, Texas, USA.

George Melika (G)

Plant Health and Molecular Biology Laboratory, Directorate of Plant Protection, Budapest, Hungary.

Andrea Lucky (A)

Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH