Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships.

biological activities garlic polysaccharides and oligosaccharides physicochemical properties production structure-function relationships

Journal

Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205

Informations de publication

Date de publication:
07 2022
Historique:
revised: 08 02 2022
received: 10 05 2021
accepted: 11 04 2022
pubmed: 30 6 2022
medline: 27 7 2022
entrez: 29 6 2022
Statut: ppublish

Résumé

Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 10

Identifiants

pubmed: 35765769
doi: 10.1111/1541-4337.12972
doi:

Substances chimiques

Antioxidants 0
Oligosaccharides 0
Polysaccharides 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3033-3095

Informations de copyright

© 2022 Institute of Food Technologists®.

Références

Aachary, A. A., & Prapulla, S. G. (2009). Value addition to spent osmotic sugar solution (SOS) by enzymatic conversion to fructooligosaccharides (FOS), a low calorie prebiotic. Innovative Food Science & Emerging Technologies, 10(2), 284-288. https://doi.org/10.1016/j.ifset.2008.11.013
Abrams, S. A., Hawthorne, K., Aliu, O., Hicks, P., Chen, Z., & Griffin, I. (2007). An inulin-type fructan enhances calcium absorption in young adults throughout the GI tract with the largest effect occurring in the colon. The FASEB Journal, 21(5), A175-A175. https://doi.org/10.1096/fasebj.21.5.A175
Akın, M. B., Akın, M. S., & Kırmacı, Z. (2007). Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food Chemistry, 104(1), 93-99. https://doi.org/10.1016/j.foodchem.2006.11.030
Albrecht, S., van Muiswinkel, G. C., Schols, H. A., Voragen, A. G., & Gruppen, H. (2009). Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior. Journal of Agricultural and Food Chemistry, 57(9), 3867-3876. https://doi.org/10.1021/jf8038956
Alvaro-Benito, M., de Abreu, M., Fernández-Arrojo, L., Plou, F. J., Jiménez-Barbero, J., Ballesteros, A., Polainad, J., & Fernández-Lobato, M. (2007). Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Journal of Biotechnology, 132(1), 75-81. https://doi.org/10.1016/j.jbiotec.2007.07.939
Amorij, J. P., Meulenaar, J., Hinrichs, W. L. J., Stegmann, T., Huckriede, A., Coenen, F., & Frijlink, H. W. (2007). Rational design of an influenza subunit vaccine powder with sugar glass technology: Preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine, 25(35), 6447-6457. https://doi.org/10.1016/j.vaccine.2007.06.054
Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188-205. https://doi.org/10.1111/j.1753-4887.2009.00189.x
Andersson, R., Fransson, G., Tietjen, M., & Åman, P. (2009). Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. Journal of Agricultural and Food Chemistry, 57(5), 2004-2008. https://doi.org/10.1021/jf801280f
Andrade, A. C., Bautista, C. R., Cabrera, M. R., Guerra, R. S., Chávez, E. G., Ahumada, C. F., & Lagunes, A. G. (2019). Agave salmiana fructans as gut health promoters: Prebiotic activity and inflammatory response in Wistar healthy rats. International Journal of Biological Macromolecules, 136, 785-795. https://doi.org/10.1016/j.ijbiomac.2019.06.045
Andrade, A. C., Bautista, C. R., Hernández, C. G., Cabrera, M. R., Ahumada, C. F., Chávez, E. G., & Lagunes, A. G. (2018). Physiometabolic effects of Agave salmiana fructans evaluated in Wistar rats. International Journal of Biological Macromolecules, 108, 1300-1309. https://doi.org/10.1016/j.ijbiomac.2017.11.043
Apolinário, A. C., de Carvalho, E. M., de Lima Damasceno, B. P. G., da Silva, P. C. D., Converti, A., Pessoa, A., Jr., & Silva, J. A. (2017). Extraction, isolation and characterization of inulin from Agave sisalana boles. Industrial Crops and Products, 108, 355-362. https://doi.org/10.1016/j.indcrop.2017.06.045
Apolinário, A. C., de Lima Damasceno, B. P. G., de Macêdo Beltrão, N. E., Pessoa, A., Converti, A., & Silva, J. A. (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers, 101, 368-378. https://doi.org/10.1016/j.carbpol.2013.09.081
Arfelli, G., & Sartini, E. (2014). Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection. Food Chemistry, 142, 152-158. https://doi.org/10.1016/j.foodchem.2013.07.008
Arslanoglu, S., Moro, G. E., Schmitt, J., Tandoi, L., Rizzardi, S., & Boehm, G. (2008). Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. The Journal of Nutrition, 138(6), 1091-1095. https://doi.org/10.1089/jmf.2007.650
Ávila-Fernández, Á., Galicia-Lagunas, N., Rodríguez-Alegría, M. E., Olvera, C., & López-Munguía, A. (2011). Production of functional oligosaccharides through limited acid hydrolysis of agave fructans. Food Chemistry, 129(2), 380-386. https://doi.org/10.1016/j.foodchem.2011.04.088
Baghdasaryan, G. Y., & Baghdasaryan, Y. G. (2014). Inulin content in different plants and obtaining of endoinulase enzyme from dandelion. Biological Journal of Armenia, 4, 80-84.
Bai, D., Han, C. X., Wang, R. H., Diao, Z. B., & Liu, L. M. (2014). Determination of composition and content of monoses in garlic polysaccharide by ion chromatography. Chinese Journal of Information on TCM, 21, 74-76. https://doi.org/10.3969/j.issn.1005-5304.2014.10.022
Bali, V., Panesar, P. S., Bera, M. B., & Panesar, R. (2015). Fructo-oligosaccharides: Production, purification and potential applications. Critical Reviews in Food Science and Nutrition, 55(11), 1475-1490. https://doi.org/10.1007/978-1-4614-8005-1_10
Balnois, E., & Wilkinson, K. J. (2002). Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 207(1-3), 229-242. https://doi.org/10.1016/S0927-7757(02)00136-X
Bao, Y., Chen, C., & Newburg, D. S. (2013). Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry. Analytical Biochemistry, 433(1), 28-35. https://doi.org/10.1016/j.ab.2012.10.003
Barrangou, R., Azcarate-Peril, M. A., Duong, T., Conners, S. B., Kelly, R. M., & Klaenhammer, T. R. (2006). Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3816-3821. https://doi.org/10.1073/pnas.0511287103
Baumgartner, S., Dax, T. G., Praznik, W., & Falk, H. (2000). Characterisation of the high-molecular weight fructan isolated from garlic (Allium sativum L.). Carbohydrate Research, 328(2), 177-183. https://doi.org/10.1016/S0008-6215(00)00097-5
Benchamas, G., Huang, G., Huang, S., & Huang, H. (2021). Preparation and biological activities of chitosan oligosaccharides. Trends in Food Science & Technology, 107, 38-44. https://doi.org/10.1016/j.tifs.2020.11.027
Benkeblia, N. (2013). Fructooligosaccharides and fructans analysis in plants and food crops. Journal of Chromatography A, 1313, 54-61. https://doi.org/10.1016/j.chroma.2013.08.013
Benyacoub, J., Rochat, F., Saudan, K. Y., Rochat, I., Antille, N., Cherbut, C., von der Weid, T., Schiffrin, E. J., & Blum, S. (2008). Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. The Journal of Nutrition, 138(1), 123-129. https://doi.org/10.1093/jn/138.1.123
Block, E. (1992). The organosulfur chemistry of the genus Allium-Implications for the organic chemistry of sulfur. Angewandte Chemie International Edition in English, 31(9), 1135-1178. https://doi.org/10.1002/anie.199211351
Biggs, D. R., & Hancock, K. R. (2001). Fructan 2000. Trends in Plant Science, 6(1), 8-9. https://doi.org/10.1016/S1360-1385(00)01796-9
Bo, R., Ji, X., Yang, H., Liu, M., & Li, J. (2021). The characterization of optimal selenized garlic polysaccharides and its immune and antioxidant activity in chickens. International Journal of Biological Macromolecules, 182, 136-143. https://doi.org/10.1016/j.ijbiomac.2021.03.197
Bonnema, A. L., Kolberg, L. W., Thomas, W., & Slavin, J. L. (2010). Gastrointestinal tolerance of chicory inulin products. Journal of the American Dietetic Association, 110(6), 865-868. https://doi.org/10.1016/j.jada.2010.03.025
Bovee-Oudenhoven, I. M. J., Ten Bruggencate, S. J. M., Lettink-Wissink, M. L. G., & van der Meer, R. (2003). Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut, 52(11), 1572-1578. https://doi.org/10.1136/gut.52.11.1572
Bravo-Núñez, Á., Golding, M., McGhie, T. K., Gómez, M., & Matía-Merino, L. (2019). Emulsification properties of garlic aqueous extract. Food Hydrocolloids, 93, 111-119. https://doi.org/10.1016/j.foodhyd.2019.02.029
Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., … Dowell, S. J. (2003). The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry, 278(13), 11312-11319. https://doi.org/10.1074/jbc.M211609200
Buddington, K. K., Donahoo, J. B., & Buddington, R. K. (2002). Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. The Journal of Nutrition, 132(3), 472-477. https://doi.org/10.1038/sj/oji/0801938
Bujacz, A., Jedrzejczak-Krzepkowska, M., Bielecki, S., Redzynia, I., & Bujacz, G. (2011). Crystal structures of the apo form of β-fructofuranosidase from Bifidobacterium longum and its complex with fructose. The FEBS Journal, 278(10), 1728-1744. https://doi.org/10.1111/j.1742-4658.2011.08098.x
Cairns, A. J., Nash, R., de Carvalho, M. A. M., & Sims, I. M. (1999). Characterization of the enzymatic polymerization of 2, 6-linked fructan by leaf extracts from timothy grass (Phleum pratense). The New Phytologist, 142(1), 79-91. https://doi.org/10.1016/j.jada.2010.03.025
Caleffi, E. R., Krausová, G., Hyršlová, I., Paredes, L. L. R., dos Santos, M. M., Sassaki, G. L., Gonçalves, R. A. C., & de Oliveira, A. J. B. (2015). Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots. International Journal of Biological Macromolecules, 80, 392-399. https://doi.org/10.1016/j.ijbiomac.2015.06.053
Capriles, V. D., & Arêas, J. A. (2013). Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food & Function, 4(1), 104-110. https://doi.org/10.1039/c2fo10283h
Carmody, R. N., Gerber, G. K., Luevano, J. M., Jr., Gatti, D. M., Somes, L., Svenson, K. L., & Turnbaugh, P. J. (2015). Diet dominates host genotype in shaping the murine gut microbiota. Cell Host & Microbe, 17(1), 72-84. https://doi.org/10.1016/j.chom.2014.11.010
Carvalho, A. F. A., de Oliva Neto, P., Da Silva, D. F., & Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75-85. https://doi.org/10.1016/j.foodres.2012.11.021
Castro-Alves, V. C., & do Nascimento, J. R. O. (2021). Size matters: TLR4-mediated effects of α-(1, 5)-linear arabino-oligosaccharides in macrophage-like cells depend on their degree of polymerization. Food Research International, 141, 110093. https://doi.org/10.1016/j.foodres.2020.110093
Cederkvist, F. H., Mormann, M., Froesch, M., Eijsink, V. G., Sørlie, M., & Peter-Katalinić, J. (2011). Concurrent enzyme reactions and binding events for chitinases interacting with chitosan oligosaccharides monitored by high resolution mass spectrometry. International Journal of Mass Spectrometry, 305(2-3), 178-184. https://doi.org/10.1016/j.ijms.2010.10.031
Cescutti, P., Kallioinen, A., Impallomeni, G., Toffanin, R., Pollesello, P., Leisola, M., & Eerikäinen, T. (2005). Structure of the exopolysaccharide produced by Enterobacter amnigenus. Carbohydrate Research, 340(3), 439-447. https://doi.org/10.1016/j.carres.2004.12.008
Chabot, S., Yu, H. L., De Léséleuc, L., Cloutier, D., Van Calsteren, M. R., Lessard, M., Roy, D., Lacroix, M., & Oth, D. (2001). Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-γ in mouse splenocytes. Le Lait, 81(6), 683-697. https://doi.org/10.1051/lait:2001157
Chakka, V. P., & Zhou, T. (2020). Carboxymethylation of polysaccharides: Synthesis and bioactivities. International Journal of Biological Macromolecules, 165, 2425-2431. https://doi.org/10.1016/j.ijbiomac.2020.10.178
Chandrashekar, P. M., Prashanth, K. V. H., & Venkatesh, Y. P. (2011). Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry, 72(2-3), 255-264. https://doi.org/10.1016/j.phytochem.2010.11.015
Chandrashekar, P. M., & Venkatesh, Y. P. (2016). Immunostimulatory properties of fructans derived from raw garlic (Allium sativum L.). Bioactive Carbohydrates and Dietary Fibre, 8(2), 65-70. https://doi.org/10.1016/j.bcdf.2016.11.003
Chen, F., & Huang, G. (2018). Preparation and immunological activity of polysaccharides and their derivatives. International Journal of Biological Macromolecules, 112, 211-216. https://doi.org/10.1016/j.ijbiomac.2018.01.169
Chen, F., Huang, G., & Huang, H. (2021a). Preparation, analysis, antioxidant activities in vivo of phosphorylated polysaccharide from Momordica charantia. Carbohydrate Polymers, 252, 117179. https://doi.org/10.1016/j.carbpol.2020.117179
Chen, F., Huang, S., & Huang, G. (2021b). Preparation, activity, and antioxidant mechanism of rice bran polysaccharide. Food & Function, 12(2), 834-839. https://doi.org/10.1039/D0FO02498H
Chen, H., Liu, L. J., Zhu, J. J., Xu, B., & Li, R. (2010). Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes activity in high fat rats. Food Chemistry, 119(4), 1633-1636. https://doi.org/10.1016/j.foodchem.2009.09.056
Chen, J., & Huang, G. (2019). Antioxidant activities of garlic polysaccharide and its phosphorylated derivative. International Journal of Biological Macromolecules, 125, 432-435. https://doi.org/10.1016/j.ijbiomac.2018.12.073
Chen, J., leong Cheong, K., Song, Z., Shi, Y., & Huang, X. (2013). Structure and protective effect on UVB-induced keratinocyte damage of fructan from white garlic. Carbohydrate Polymers, 92(1), 200-205. https://doi.org/10.1016/j.carbpol.2012.09.068
Chen, L. Q., Huang, Q., & Liu, X. Q. (2009). Effects of selenium-rich konjac and garlic polysaccharide on blood lipids in rats. Chinese Journal of Public Health, 25, 1402-1403. https://doi.org/10.11847/zgggws2009-25-11-69
Chen, N. Y., Hsu, T. H., Lin, F. Y., Lai, H. H., & Wu, J. Y. (2006). Effects on cytokine-stimulating activities of EPS from Tremella mesenterica with various carbon sources. Food Chemistry, 99(1), 92-97. https://doi.org/10.1016/j.foodchem.2005.07.023
Chen, R. P., Chen, R. Z., Zhang, M., Dong, H., Li, Y., & Liu, Z. Q. (2012). Extraction and antioxidant activities of polysaccharide from garlic with combined-enzyme method. Journal of Molecular Science, 28, 47-52. https://doi.org/10.3969/j.issn.1000-9035.2012.01.008
Chen, X. M., Xu, X. M., Jin, Z. Y., & Chen, H. Q. (2012). Expression of an endoinulinase from Aspergillus ficuum JNSP5-06 in Escherichia coli and its characterization. Carbohydrate Polymers, 88(2), 748-753. https://doi.org/10.1016/j.carbpol.2012.11.087
Chen, X., & Huang, G. (2020). Synthesis and antioxidant activities of garlic polysaccharide-Fe (III) complex. International Journal of Biological Macromolecules, 145, 813-818. https://doi.org/10.1016/j.ijbiomac.2019.10.041
Chen, X., & Huang, G. (2021). Preparation, characterization and antioxidant activity of acetylated garlic polysaccharide, and garlic polysaccharide-Zn (II) complex. Journal of Applied Polymer Science, 138(44), 51303. https://doi.org/10.1002/app.51303
Chen, X., Fang, Y., Nishinari, K., We, H., Sun, C., Li, J., & Jiang, Y. (2014). Physicochemical characteristics of polysaccharide conjugates prepared from fresh tea leaves and their improving impaired glucose tolerance. Carbohydrate Polymers, 112, 77-84. https://doi.org/10.1016/j.carbpol.2014.05.030
Chen, Y., Zhang, H., Wang, Y., Nie, S., Li, C., & Xie, M. (2015). Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chemistry, 186, 231-238. https://doi.org/10.1016/j.foodchem.2014.10.032
Cheng, H., & Huang, G. (2018). Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide. International Journal of Biological Macromolecules, 114, 415-419. https://doi.org/10.1016/j.ijbiomac.2018.03.156
Cheng, H., & Huang, G. (2019). The antioxidant activities of carboxymethylated garlic polysaccharide and its derivatives. International Journal of Biological Macromolecules, 140, 1054-1063. https://doi.org/10.1016/j.ijbiomac.2019.08.204
Cheng, H., Huang, G., & Huang, H. (2020). The antioxidant activities of garlic polysaccharide and its derivatives. International Journal of Biological Macromolecules, 145, 819-826. https://doi.org/10.1016/j.ijbiomac.2019.09.232
Cheng, Z., Hu, M., Tao, J., Yang, H., Yan, P., An, G., & Wang, H. (2019). The protective effects of Chinese yam polysaccharide against obesity-induced insulin resistance. Journal of Functional Foods, 55, 238-247. https://doi.org/10.1016/j.jff.2019.02.023
Chi, A., Li, H., Kang, C., Guo, H., Wang, Y., Guo, F., & Tang, L. (2015). Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea. International Journal of Biological Macromolecules, 80, 566-572. https://doi.org/10.1016/j.ijbiomac.2015.06.055
Cho, S. S., & Samuel, P. (2009). Fiber ingredients: Food applications and health benefits. CRC Press.
Clarke, S. T., Green-Johnson, J. M., Brooks, S. P., Ramdath, D. D., Bercik, P., Avila, C., Inglis, G. D., Green, J., Yanke, L. J., Selinger, L. B., & Kalmokoff, M. (2016). β2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: Results from a double-blinded, randomised, cross-over study in healthy adults. British Journal of Nutrition, 115(10), 1748-1759. https://doi.org/10.1017/S0007114516000908
Clausen, M. R., Bach, V., Edelenbos, M., & Bertram, H. C. (2012). Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Journal of Agricultural and Food Chemistry, 60(37), 9495-9501. https://doi.org/10.1021/jf302067m
Coenen, G. J., Kabel, M. A., Schols, H. A., & Voragen, A. G. (2008). CE-MSn of complex pectin-derived oligomers. Electrophoresis, 29(10), 2101-2111. https://doi.org/10.1002/elps.200700465
Coulier, L., Timmermans, J., Bas, R., Van Den Dool, R., Haaksman, I., Klarenbeek, B., Slaghek, T., & Van Dongen, W. (2009). In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. Journal of Agricultural and Food Chemistry, 57(18), 8488-8495. https://doi.org/10.1021/jf902549e
Covington, D. K., Briscoe, C. A., Brown, A. J., & Jayawickreme, C. K. (2006). The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing. Biochemical Society Transactions, 34, 770-773. https://doi.org/10.1042/BST0340770
Coxam, V. (2005). Inulin-type fructans and bone health: State of the art and perspectives in the management of osteoporosis. British Journal of Nutrition, 93(S1), S111-S123. https://doi.org/10.1079/bjn20041341
Crispín-Isidro, G., Lobato-Calleros, C., Espinosa-Andrews, H., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2015). Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT-Food Science and Technology, 62(1), 438-444. https://doi.org/10.1016/j.lwt.2014.06.042
Cui, Y. Y. (2009). Study on structure analysis and anticoagulant function in vitro of garlic polysaccharides (M.S. dissertation). Anhui Agricultural University.
Cui, Y. Y., Zhang, J. Y., Zhang, R. H., & Huang, L. Q. (2009). Study on structure analysis and anticoagulant function in vitro of garlic polysaccharides. Food and Fermentation Industries, 35, 24-27. https://doi.org/10.1007/978-3-540-85168-4_52
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478. https://doi.org/10.1038/s41575-019-0157-3
Das, N. N., & Das, A. (1978). Structure of the D-fructan isolated from garlic (Allium sativum) bulbs. Carbohydrate Research, 64, 155-167. https://doi.org/10.1016/S0008-6215(00)83697-6
de Almeida Paula, H. A., Abranches, M. V., & de Luces Fortes Ferreira, C. L. (2015). Yacon (Smallanthus sonchifolius): A food with multiple functions. Critical Reviews in Food Science and Nutrition, 55(1), 32-40. https://doi.org/10.1080/10408398.2011.645259
De Maesschalck, C., Eeckhaut, V., Maertens, L., De Lange, L., Marchal, L., Nezer, C., De Baere, S., Croubels, S., Daube, G., Dewulf, J., Haesebrouck, F., Ducatelle, R., Taminau, B., & Van Immerseel, F. (2015). Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Applied and Environmental Microbiology, 81(17), 5880-5888. https://doi.org/10.1128/AEM.01616-15
de Kivit, S., Kraneveld, A. D., Garssen, J., & Willemsen, L. E. (2011). Glycan recognition at the interface of the intestinal immune system: Target for immune modulation via dietary components. European Journal of Pharmacology, 668, S124-S132. https://doi.org/10.1016/j.ejphar.2011.05.086
De Oliveira, A. J. B., Gonçalves, R. A. C., Chierrito, T. P. C., dos Santos, M. M., de Souza, L. M., Gorin, P. A. J., Sassaki, G. L., & Iacomini, M. (2011). Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni. Food Chemistry, 129(2), 305-311. https://doi.org/10.1016/j.foodchem.2011.04.057
de Souza Oliveira, R. P., Perego, P., de Oliveira, M. N., & Converti, A. (2011). Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. Journal of Food Engineering, 107(1), 36-40. https://doi.org/10.1016/j.jfoodeng.2011.06.005
Delzenne, N. M., Cani, P. D., Daubioul, C., & Neyrinck, A. M. (2005). Impact of inulin and oligofructose on gastrointestinal peptides. British Journal of Nutrition, 93(S1), S157-S161. https://doi.org/10.1079/BJN20041342
Delzenne, N. M., Daubioul, C., Neyrinck, A., Lasa, M., & Taper, H. S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: Review of biochemical events and future prospects. British Journal of Nutrition, 87(S2), S255-S259. https://doi.org/10.1079/BJNBJN/2002545
den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T. H., Oosterveer, M. H., Jonker, J. W., Groen, A. K., Reijngoud, D.-J., & Bakker, B. M. (2015). Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes, 64(7), 2398-2408. https://doi.org/10.2337/db14-1213
Diard, M., Garry, L., Selva, M., Mosser, T., Denamur, E., & Matic, I. (2010). Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. Journal of Bacteriology, 192(19), 4885-4893. https://doi.org/10.1128/JB.00804-10
Ding, H., Li, N., Lu, X., Guo, J., Yi, Y., & Qiao, X. (2018). A method of ultrafiltration membrane to treatment garlic processing wastewater. Journal of Food Process Engineering, 41(8), e12933. https://doi.org/10.1111/jfpe.12933
Dong, C. X., Zhang, L. J., Xu, R., Zhang, G., Zhou, Y. B., Han, X. Q., Zhang, Y., & Sun, Y. X. (2015). Structural characterization and immunostimulating activity of a levan-type fructan from Curcuma kwangsiensis. International Journal of Biological Macromolecules, 77, 99-104. https://doi.org/10.1016/j.ijbiomac.2015.03.009
Du, X., Zhang, J., Lv, Z., Ye, L., Yang, Y., & Tang, Q. (2014). Chemical modification of an acidic polysaccharide (TAPA1) from Tremella aurantialba and potential biological activities. Food Chemistry, 143, 336-340. https://doi.org/10.1016/j.foodchem.2013.07.137
Eklund, R., Lycknert, K., Söderman, P., & Widmalm, G. (2005). A conformational dynamics study of α-L-Rha p-(1→2)[α-l-Rha p-(1→ 3)]-α-L-Rha p-OMe in solution by NMR experiments and molecular simulations. The Journal of Physical Chemistry B, 109(42), 19936-19945. https://doi.org/10.1021/jp053198o
Elinav, E., Strowig, T., Henao-Mejia, J., & Flavell, R. A. (2011). Regulation of the antimicrobial response by NLR proteins. Immunity, 34(5), 665-679. https://doi.org/10.1016/j.immuni.2011.05.007
Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli, G. G., Neyrinck, A. M., Possemiers, S., Van Holle, A., François, P., de Vos, W. M., Delzenne, N. M., Schrenzel, J., & Cani, P. D. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 60(11), 2775-2786. https://doi.org/10.2337/db11-0227
Fares, M. M., & Khanfar, M. (2011). Inulin and poly (acrylic acid) grafted inulin for dissolution enhancement and preliminary controlled release of poorly water-soluble Irbesartan drug. International Journal of Pharmaceutics, 410(1-2), 206-211. https://doi.org/10.1016/j.ijpharm.2011.03.029
Fei, B. B., Ling, L., Hua, C., & Ren, S. Y. (2014). Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus. Food Chemistry, 158, 429-432. https://doi.org/10.1016/j.foodchem.2014.02.106
Fenwick, T. E., & Hanley, A. B. (1985). The genus Allium. Part 2. Critical Reviews in Food Science and Nutrition, 22(4), 273-377.
Fernández, E. C., Rajchl, A., Lachman, J., Čížková, H., Kvasnička, F., Kotíková, Z., Milella, L., & Voldřich, M. (2013). Impact of yacon landraces cultivated in the Czech Republic and their ploidy on the short-and long-chain fructooligosaccharides content in tuberous roots. LWT - Food Science and Technology, 54(1), 80-86. https://doi.org/10.1016/j.lwt.2013.05.013
Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., & Coimbra, M. A. (2015). Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers, 132, 378-396. https://doi.org/10.1016/j.carbpol.2015.05.079
Figueira, G. M., Park, K. J., Brod, F. P. R., & Honorio, S. L. (2004). Evaluation of desorption isotherms, drying rates and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. Journal of Food Engineering, 63(3), 273-280. https://doi.org/10.1016/j.jfoodeng.2003.06.001
Forest, V., Pierre, F., Bassonga, E., Meflah, K., & Menanteau, J. (2005). Large intestine intraepithelial lymphocytes from Apc+/+ and Apc+/Min mice and their modulation by indigestible carbohydrates: The IL-15/IL-15Rα complex and CD4+ CD25+ T cells are the main targets. Cancer Immunology, Immunotherapy, 54(1), 78-86. https://doi.org/10.1007/s00262-004-0543-7
Franco-Robles, E., & López, M. G. (2015). Implication of fructans in health: Immunomodulatory and antioxidant mechanisms. The Scientific World Journal, 2015, 289267. https://doi.org/10.1155/2015/289267
Franco-Robles, E., & López, M. G. (2016). Agavins increase neurotrophic factors and decrease oxidative stress in the brains of high-fat diet-induced obese mice. Molecules, 21(8), 998. https://doi.org/10.3390/molecules21080998
Freeland, K. R., & Wolever, T. M. (2010). Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. British Journal of Nutrition, 103(3), 460-466. https://doi.org/10.1017/S0007114509991863
Fu, Y. P., Li, L. X., Zhang, B. Z., Paulsen, B. S., Yin, Z. Q., Huang, C., Feng, B., Chen, X.-F., Jia, R.-R., Song, X., Ni, X.-Q., Jing, B., Wu, F.-m., & Zou, Y.-F. (2018). Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydrate Polymers, 193, 212-220. https://doi.org/10.1016/j.carbpol.2018.03.065
Fujitani, S., Ueno, K., Kamiya, T., Tsukahara, T., Ishihara, K., Kitabayashi, T., & Itabashi, K. (2007). Increased number of CCR4-positive cells in the duodenum of ovalbumin-induced food allergy model Nc/jic mice and antiallergic activity of fructooligosaccharides. Allergology International, 56(2), 131-138. https://doi.org/10.2332/allergolint.O-06-450
Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J. H., Walsh, S. V., O'neil, D. A., & Macfarlane, G. T. (2005). Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut, 54(2), 242-249. https://doi.org/10.1136/gut.2004.044834
Gabriel, N. N., Wilhelm, M. R., Habte-Tsion, H. M., Chimwamurombe, P., & Omoregie, E. (2019). Dietary garlic (Allium sativum) crude polysaccharides supplementation on growth, haematological parameters, whole body composition and survival at low water pH challenge in African catfish (Clarias gariepinus) juveniles. Scientific African, 5, e00128. https://doi.org/10.1016/j.sciaf.2019.e00128
Gamboa, R. G., Basurto, R. I. O., Santoyo, M. C., Madrigal, J. B., Álvarez, B. E. R., & Avila, M. G. (2018). In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: A comparison based on polymerization degree. LWT - Food Science and Technology, 92, 380-387. https://doi.org/10.1016/j.lwt.2018.02.051
Ganaie, M. A., & Gupta, U. S. (2014). Recycling of cell culture and efficient release of intracellular fructosyltransferase by ultrasonication for the production of fructooligosaccharides. Carbohydrate Polymers, 110, 253-258. https://doi.org/10.1016/j.carbpol.2014.03.066
Ganapathy, V., Thangaraju, M., Gopal, E., Martin, P. M., Itagaki, S., Miyauchi, S., & Prasad, P. D. (2008). Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. The AAPS Journal, 10(1), 193. https://doi.org/10.1208/s12248-008-9022-y
Gänzle, M., & Follador, R. (2012). Metabolism of oligosaccharides and starch in lactobacilli: A review. Frontiers in Microbiology, 3, 340. https://doi.org/10.3389/fmicb.2012.00340
Gao, Z., Chen, J., Qiu, S., Li, Y., Wang, D., Liu, C., Li, X., Hou, R., Yue, C., Liu, J., Li, H., & Hu, Y. (2016). Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydrate Polymers, 136, 560-569. https://doi.org/10.1016/j.carbpol.2015.09.065
Gao, Z., Liu, K., Tian, W., Wang, H., Liu, Z., Li, Y., Li, E., Liu, C., Li, X., Hou, R., Yue, C., & Wang, D. (2015). Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage. International Immunopharmacology, 27(1), 104-109. https://doi.org/10.1016/j.intimp.2015.04.052
García-Curbelo, Y., Bocourt, R., Savón, L. L., García-Vieyra, M. I., & López, M. G. (2015). Prebiotic effect of Agave fourcroydes fructans: An animal model. Food & Function, 6(9), 3177-3182. https://doi.org/10.1039/C5FO00653H
García-Vieyra, M. I., Del Real, A., & López, M. G. (2014). Agave fructans: Their effect on mineral absorption and bone mineral content. Journal of Medicinal Food, 17(11), 1247-1255. https://doi.org/10.1089/jmf.2013.0137
Gargari, B. P., Dehghan, P., Aliasgharzadeh, A., & Jafar-Abadi, M. A. (2013). Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes. Diabetes & Metabolism Journal, 37(2), 140-148. https://doi.org/10.4093/dmj.2013.37.2.140
Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259-275. https://doi.org/10.1079/NRR200479
Gómez, B., Gullón, B., Yáñez, R., Schols, H., & Alonso, J. L. (2016). Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. Journal of Functional Foods, 20, 108-121. https://doi.org/10.1016/j.jff.2015.10.029
Griffin, I. J., Davila, P. M., & Abrams, S. A. (2002). Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. British Journal of Nutrition, 87(S2), S187-S191. https://doi.org/10.1079/BJNBJN/2002536
Guan, Y. N., Wu, H., Yang, S. L., & Wang, C. R. (2014). Optimization of multi-enzyme hydrolysis extraction of polysaccharide from garlic under the effect of ultrasonic wave. China Condiment, 39, 20-24. https://doi.org/10.3969/j.issn.1000-9973.2014.02.005
Guggisberg, D., Cuthbert-Steven, J., Piccinali, P., Bütikofer, U., & Eberhard, P. (2009). Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. International Dairy Journal, 19(2), 107-115. https://doi.org/10.1016/j.idairyj.2008.07.009
Guo, Q., Cui, S. W., Wang, Q., Hu, X., Kang, J., & Yada, R. Y. (2012). Structural characterization of a low-molecular-weight heteropolysaccharide (glucomannan) isolated from Artemisia sphaerocephala Krasch. Carbohydrate Research, 350, 31-39. https://doi.org/10.1016/j.carres.2011.10.020
Gupta, N., Jangid, A. K., Pooja, D., & Kulhari, H. (2019). Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. International Journal of Biological Macromolecules, 132, 852-863. https://doi.org/10.1016/j.ijbiomac.2019.03.188
Harrison, S. J., Fraser, K., Lane, G. A., Villas-Boas, S., & Rasmussen, S. (2009). A reverse-phase liquid chromatography/mass spectrometry method for the analysis of high-molecular-weight fructooligosaccharides. Analytical Biochemistry, 395(1), 113-115. https://doi.org/10.1016/j.ab.2009.08.010
Hartemink, R., Van Laere, K. M. J., & Rombouts, F. M. (1997). Growth of enterobacteria on fructo-oligosaccharides. Journal of Applied Microbiology, 83(3), 367-374. https://doi.org/10.1046/j.1365-2672.1997.00239.x
Healey, G. R., Tsai, K., Schick, A., Lisko, D. J., Cook, L., Vallance, B. A., & Jacobson, K. (2021). Prebiotic enriched exclusive enteral nutrition suppresses colitis via gut microbiome modulation and expansion of anti-inflammatory T cells in a mouse model of colitis. Cellular and Molecular Gastroenterology and Hepatology, 12(4), 1251-1266. https://doi.org/10.1016/j.jcmgh.2021.06.011
Hernalsteens, S., & Maugeri, F. (2008). Purification and characterisation of a fructosyltransferase from Rhodotorula sp. Applied Microbiology and Biotechnology, 79(4), 589. https://doi.org/10.1007/s00253-008-1470-x
Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T., & Tashiro, Y. (1986). Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria and Microflora, 5(1), 37-50. https://doi.org10.12938/bifidus1982.5.1_37
Hoja-Łukowicz, D., Ciołczyk, D., Bergquist, J., Lityñska, A., & Laidler, P. (2000). High-mannose-type oligosaccharides from human placental arylsulfatase A are core fucosylated as confirmed by MALDI MS. Glycobiology, 10(6), 551-557. https://doi.org/10.1093/glycob/10.6.551
Huang, G., Chen, F., Yang, W., & Huang, H. (2021). Preparation, deproteinization and comparison of bioactive polysaccharides. Trends in Food Science & Technology, 109, 564-568. https://doi.org/10.1016/j.tifs.2021.01.038
Huang, G., & Huang, S. (2021). The structure-activity relationships of natural glucans. Phytotherapy Research, 35(6), 2890-2901. https://doi.org/10.1002/ptr.6995
Huang, X. S. (2005). Isolation and identification of garlic polysaccharide. Food Science, 26, 48-51. https://doi.org/10.1007/s11769-005-0030-x
Huang, X. S., Li, Y. S., & Shi, S. M. (2009). Study of functions and properties of garlic polysaccharide. Modern Food Science and Technology, 25, 588-591. https://doi.org/10.3969/j.issn.1673-9078.2009.06.003
Huang, X. S., Yan, F. C., & Wu, J. Z. (2011). Determination of molecular weight distribution of garlic oligosaccharide and polysaccharide by matrix-assisted laser desorption/ionization mass spectrometry. Food Science, 32, 146-149. https://doi.org/10.1090/S0002-9939-2011-10775-5
Hussain, P. R., Wani, I. A., Suradkar, P. P., & Dar, M. A. (2014). Gamma irradiation induced modification of bean polysaccharides: Impact on physicochemical, morphological and antioxidant properties. Carbohydrate Polymers, 110, 183-194. https://doi.org/10.1016/j.carbpol.2014.03.028
Huazano-García, A., & López, M. G. (2015). Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones. Food & Function, 6(12), 3720-3727. https://doi.org/10.1039/C5FO00830A
Ignot-Gutiérrez, A., Ortiz-Basurto, R. I., García-Barradas, O., Díaz-Ramos, D. I., & Jiménez-Fernández, M. (2020). Physicochemical and functional properties of native and modified agave fructans by acylation. Carbohydrate Polymers, 245, 116529. https://doi.org/10.1016/j.carbpol.2020.116529
Imeson, A. (Ed.). (2011). Food stabilisers, thickeners and gelling agents. John Wiley & Sons.
Ishiguro, Y., Onodera, S., Benkeblia, N., & Shiomi, N. (2010). Variation of total FOS, total IOS, inulin and their related-metabolizing enzymes in burdock roots (Arctium lappa L.) stored under different temperatures. Postharvest Biology and Technology, 56(3), 232-238. https://doi.org/10.1016/j.postharvbio.2010.01.010
Ito, H., Takemura, N., Sonoyama, K., Kawagishi, H., Topping, D. L., Conlon, M. A., & Morita, T. (2011). Degree of polymerization of inulin-type fructans differentially affects number of lactic acid bacteria, intestinal immune functions, and immunoglobulin A secretion in the rat cecum. Journal of Agricultural and Food Chemistry, 59(10), 5771-5778. https://doi.org/10.1021/jf200859z
Jasso-Padilla, I., Juárez-Flores, B., Alvarez-Fuentes, G., De la Cruz-Martínez, A., González-Ramírez, J., Moscosa-Santillán, M., González-Chávez, M., Oros-Ovalle, C., Prell, F., Czermak, P., & Martinez-Gutierrez, F. (2017). Effect of prebiotics of Agave salmiana fed to healthy Wistar rats. Journal of the Science of Food and Agriculture, 97(2), 556-563. https://doi.org/10.1002/jsfa.7764
Jenkins, C. L., Lewis, D., Bushell, R., Belobrajdic, D. P., & Bird, A. R. (2011). Chain length of cereal fructans isolated from wheat stem and barley grain modulates in vitro fermentation. Journal of Cereal Science, 53(2), 188-191. https://doi.org/10.1016/j.jcs.2010.12.001
Ji, X., Liu, F., Peng, Q., & Wang, M. (2018). Purification, structural characterization, and hypolipidemic effects of a neutral polysaccharide from Ziziphus Jujuba cv. Muzao. Food Chemistry, 245, 1124-1130. https://doi.org/10.1016/j.foodchem.2017.11.058
Jiang, J., Meng, F. Y., He, Z., Ning, Y. L., Li, X. H., Song, H., Wang, J., & Zhou, R. (2014). Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro. International Journal of Biological Macromolecules, 67, 323-329. https://doi.org/10.1016/j.ijbiomac.2014.03.030
Jiang, Q. Y. (2003). Extraction, purification and property of neutral polysaccharide in garlic (Allium sativum L.) (M.S. dissertation). Shandong Agricultural University.
Jiang, Q. Y., Qiao, X. G., & Zhang, Z. H. (2005). Effect of extraction conditions on the yield of neutral polysaccharide from garlic (Allium Sativum L). Journal of Chinese Institute of Food Science and Technology, 5, 101-105. https://doi.org/10.3969/j.issn.1009-7848.2005.04.019
Jiang, Q. Y., Zhang, Z. H., & Qiao, X. G. (2006). Isolation and purification of neutral polysaccharide from garlic (Ⅱ). Journal of Chinese Institute of Food Science and Technology, 6, 54-58. https://doi.org/10.3969/j.issn.1009-7848.2006.02.010
Jiménez-Barbero, J., Asensio, J. L., Cañada, F. J., & Poveda, A. (1999). Free and protein-bound carbohydrate structures. Current Opinion in Structural Biology, 9(5), 549-555. https://doi.org/10.1016/S0959-440X(99)00004-4
Judprasong, K., Tanjor, S., Puwastien, P., & Sungpuag, P. (2011). Investigation of Thai plants for potential sources of inulin-type fructans. Journal of Food Composition and Analysis, 24(4-5), 642-649. https://doi.org/10.1016/j.jfca.2010.12.001
Kang, Q., Chen, S., Li, S., Wang, B., Liu, X., Hao, L., & Lu, J. (2019). Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, 124, 1137-1144. https://doi.org/10.1016/j.ijbiomac.2018.11.215
Kays, S. J., & Nottingham, S. F. (2007). Biology and chemistry of Jerusalem artichoke: Helianthus tuberosus L. CRC Press. https://doi.org/10.1017/S0014479708006595
Keenan, D. F., Resconi, V. C., Kerry, J. P., & Hamill, R. M. (2014). Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Science, 96(3), 1384-1394. https://doi.org/10.1016/j.meatsci.2013.11.025
Keller, M. A., & Stiehm, E. R. (2000). Passive immunity in prevention and treatment of infectious diseases. Clinical Microbiology Reviews, 13(4), 602-614. https://doi.org/10.1128/CMR.13.4.602-614.2000
Kelly, G. (2008). Inulin-type prebiotics-A review: Part 1. Alternative Medicine Review, 13(4), 315-329. https://doi.org/10.0000/PMID19152479
Khodeir, I. A., El-Dakhakhni, T. N., & Youssef, A. E. (2013). Effect of garlic and eucalyptus oils in comparison to organophosphatinsecticides against some piercing-sucking faba bean insect pests and natural enemies populations. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 5(2), 21-27. https://doi.org/10.21608/EAJBSF.2013.17266
Khodzhaeva, M. A., & Ismailov, Z. F. (1979). Allium carbohydrates I. Isolation and characterization of the polysaccharides. Chemistry of Natural Compounds, 15(2), 114-118. https://doi.org/10.1007/BF00570774
Kim, Y. O., Park, H. W., Kim, J. H., Lee, J. Y., Moon, S. H., & Shin, C. S. (2006). Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sciences, 79(1), 72-80. https://doi.org/10.1016/j.lfs.2005.12.047
Kimura, S., Tung, Y. C., Pan, M. H., Su, N. W., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1), 62-70. https://doi.org/10.1016/j.jfda.2016.11.003
Kodera, Y., Kurita, M., Nakamoto, M., & Matsutomo, T. (2020). Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions. Experimental and Therapeutic Medicine, 19(2), 1574-1584. https://doi.org/10.3892/etm.2019.8393
Konopiński, M. (2009). Influence of intercrop plants and varied tillage on yields and nutritional value of salsify (Tragopogon porrifolius L.) roots. Acta Scientiarum Polonorum-Hortorum Cultus, 8(2), 27-36. https://doi.org/10.1590/S1678-31662015000400002
Koo, H. N., Hong, S. H., Seo, H. G., Yoo, T. S., Lee, K. N., Kim, N. S., Kim, C.-H., & Kim, H. M. (2003). Inulin stimulates NO synthesis via activation of PKC-α and protein tyrosine kinase, resulting in the activation of NF-κB by IFN-γ-primed RAW 264.7 cells. The Journal of Nutritional Biochemistry, 14(10), 598-605. https://doi.org/10.1016/j.jnutbio.2003.07.002
Kosasih, W., Pudjiraharti, S., Ratnaningrum, D., & Priatni, S. (2015). Preparation of inulin from dahlia tubers. Procedia Chemistry, 16, 190-194. https://doi.org/10.1016/j.proche.2015.12.035
Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Science and Technology, 57(2), 761-766. https://doi.org/10.1016/j.lwt.2014.01.037
Ku, Y., Jansen, O., Oles, C. J., Lazar, E. Z., & Rader, J. I. (2003). Precipitation of inulins and oligoglucoses by ethanol and other solvents. Food Chemistry, 81(1), 125-132. https://doi.org/10.1016/S0308-8146(02)00393-X
Kuhn, R. C., & Maugeri Filho, F. (2010). Purification of fructooligosaccharides in an activated charcoal fixed bed column. New Biotechnology, 27(6), 862-869. https://doi.org/10.1016/j.nbt.2010.05.008
Kumar, V. P., Prashanth, K. H., & Venkatesh, Y. P. (2015). Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa). Carbohydrate Polymers, 117, 115-122. https://doi.org/10.1016/j.carbpol.2014.09.039
Kurakake, M., Masumoto, R. Y. O., Maguma, K., Kamata, A., Saito, E., Ukita, N., & Komaki, T. (2010). Production of fructooligosaccharides by β-fructofuranosidases from Aspergillus oryzae KB. Journal of Agricultural and Food Chemistry, 58(1), 488-492. https://doi.org/10.1021/jf903303w
Kurakake, M., Ogawa, K., Sugie, M., Takemura, A., Sugiura, K., & Komaki, T. (2008). Two types of β-fructofuranosidases from Aspergillus oryzae KB. Journal of Agricultural and Food Chemistry, 56(2), 591-596. https://doi.org/10.1021/jf072762k
Lan, J., Wang, K., Chen, G., Cao, G., & Yang, C. (2020). Effects of inulin and isomalto-oligosaccharide on diphenoxylate-induced constipation, gastrointestinal motility-related hormones, short-chain fatty acids, and the intestinal flora in rats. Food & Function, 11(10), 9216-9225. https://doi.org/10.1039/D0FO00865F
Lee, J. B., Miyake, S., Umetsu, R., Hayashi, K., Chijimatsu, T., & Hayashi, T. (2012). Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chemistry, 134(4), 2164-2168. https://doi.org/10.1016/j.foodchem.2012.04.016
Lee, J. M., Jang, W. J., Lee, E. W., & Kong, I. S. (2020). β-glucooligosaccharides derived from barley β-glucan promote growth of lactic acid bacteria and enhance nisin Z secretion by Lactococcus lactis. LWT - Food Science and Technology, 122, 109014. https://doi.org/10.1016/j.lwt.2020.109014
Lee, S., & Ki, C. S. (2020). Inflammatory responses of macrophage-like RAW264.7 cells in a 3D hydrogel matrix to ultrasonicated schizophyllan. Carbohydrate Polymers, 229, 115555. https://doi.org/10.1016/j.carbpol.2019.115555
Leijdekkers, A. G. M., Sanders, M. G., Schols, H. A., & Gruppen, H. (2011). Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. Journal of Chromatography A, 1218(51), 9227-9235. https://doi.org/10.1016/j.chroma.2011.10.068
Lewis, S., Burmeister, S., & Brazier, J. (2005). Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: A randomized, controlled study. Clinical Gastroenterology and Hepatology, 3(5), 442-448. https://doi.org/10.1016/S1542-3565(04)00677-9
Li, C. Y., Liu, K., Han, Z. X., Li, S., & Guo, L. G. (2008). Study on celulase-assisted extraction and antioxidant activity of garlic polysaccharides. Food Science, 27, 117-120. https://doi.org/10.3321/j.issn:1002-6630.2008.01.021
Li, J., Shan, L., Liu, Y., Fan, L., & Ai, L. (2011). Screening of a functional polysaccharide from Zizyphus Jujuba cv. Jinsixiaozao and its property. International Journal of Biological Macromolecules, 49(3), 255-259. https://doi.org/10.1016/j.ijbiomac.2011.04.006
Li, J., Zhang, X., Cao, L., Ji, J., & Gao, J. (2018). Three inulin-type fructans from Codonopsis pilosula (Franch.) Nannf. roots and their prebiotic activity on Bifidobacterium longum. Molecules, 23(12), 3123. https://doi.org/10.3390/molecules23123123
Li, L. H. (2014). Optimization of ultrasonic-assisted extraction of polysaccharide from garlic by orthogonal array design. China Condiment, 39, 70-73. https://doi.org/10.3969/j.issn.1000-9973.2014.07.016
Li, L., & Huang, T. (2017). Growth inhibitory effects of garlic polysaccharide on human HepG2 cells. Agricultural Science & Technology, 18(6), 988-992. https://doi.org/10.2017/06.008
Li, L., Huang, T., Lan, C., Jia, A., & Mao, Y. (2017). The growth inhibitory effects of garlic polysaccharide combined with cis-dichlorodiamine platinum on human HepG2 cells. Biologia, 72(11), 1377-1384. https://doi.org/10.1515/biolog-2017-0155
Li, L., Qiu, Z., Dong, H., Ma, C., Qiao, Y., & Zheng, Z. (2021). Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison. International Journal of Biological Macromolecules, 182, 187-196. https://doi.org/10.1016/j.ijbiomac.2021.03.177
Li, M., Yan, Y. X., Yu, Q. T., Deng, Y., Wu, D. T., Wang, Y., Ge, Y.-Z., Li, S.-P., & Zhao, J. (2017). Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. Journal of Food Science, 82(3), 765-771. https://doi.org/10.1111/1750-3841.13589
Li, N., Mao, W., Liu, X., Wang, S., Xia, Z., Cao, S., Li, L., Zhang, Q., & Liu, S. (2016). Sequence analysis of the pyruvylated galactan sulfate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. Carbohydrate Research, 433, 80-88. https://doi.org/10.1016/j.carres.2016.07.018
Li, N., Shi, C., Shi, S., Wang, H., Yan, J., & Wang, S. (2017). An inulin-type fructan isolated from Artemisia japonica and its anti-arthritic effects. Journal of Functional Foods, 29, 29-36. https://doi.org/10.1016/j.jff.2016.11.033
Li, P., Xiao, N., Zeng, L., Xiao, J., Huang, J., Xu, Y., Chen, Y., Ren, Y., & Du, B. (2020). Structural characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut microbiota dysbiosis and DSS-induced colitis in mice. Carbohydrate Polymers, 250, 116958. https://doi.org/10.1016/j.carbpol.2020.116958
Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G., & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 121, 315-319. https://doi.org/10.1016/j.carbpol.2014.12.055
Li, Z., Nie, K., Wang, Z., & Luo, D. (2016). Quantitative structure activity relationship models for the antioxidant activity of polysaccharides. PLoS ONE, 11(9), e0163536. https://doi.org/10.1371/journal.pone.0163536
Liang, L. J. (2008). Studies on the extraction, purification and bioactive functionality of the garlic polysaccharide (M.S. dissertation). Nanchang University.
Liang, L. J., Zeng, Z. L., Xiong, T., & Lv, W. (2008). Determination of content of polysaccharide in garlic seed by anthrone-sulfuric method. Food Science, 29, 499-502. https://doi.org/10.3321/j.issn:1002-6630.2008.09.118
Lisciani, S., Gambelli, L., Durazzo, A., Marconi, S., Camilli, E., Rossetti, C., Gabrielli, P., Aguzzi, A., Temperini, O., & Marletta, L. (2017). Carbohydrates components of some Italian local landraces: Garlic (Allium sativum L.). Sustainability, 9(10), 1922. https://doi.org/10.3390/su9101922
Liu, F., Liu, Y., Meng, Y., Yang, M., & He, K. (2004). Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments. Antiviral Research, 63(3), 183-189. https://doi.org/10.1016/j.antiviral.2004.04.006
Liu, W., Liu, Y., Zhu, R., Yu, J., Lu, W., Pan, C., Yao, W., & Gao, X. (2016). Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydrate Polymers, 147, 114-124. https://doi.org/10.1016/j.carbpol.2016.03.087
Liu, X. M., Maziarz, E. P., Heiler, D. J., & Grobe, G. L. (2003). Comparative studies of poly (dimethyl siloxanes) using automated GPC-MALDI-TOF MS and on-line GPC-ESI-TOF MS. Journal of the American Society for Mass Spectrometry, 14(3), 195-202. https://doi.org/10.1016/S1044-0305(02)00908-X
Liu, X. X., Liu, H. M., Yan, Y. Y., Fan, L. Y., & Qin, G. Y. (2020). Structural characterization and antioxidant activity of polysaccharides extracted from jujube using subcritical water. LWT-Food Science and Technology, 117, 108645. https://doi.org/10.1016/j.lwt.2019.108645
Liu, X. X., Wan, Z. J., Shi, L., & Lu, X. X. (2011). Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua. Carbohydrate Polymers, 83(2), 737-742. https://doi.org/10.1016/j.carbpol.2010.08.044
Liu, Y. Q., & Huang, X. S. (2005). Determination of fructan in garlic. Food and Fermentation Industries, 31, 84-86. https://doi.org/10.3321/j.issn:0253-990X.2005.08.022
Liu, Y. Q., & Huang, X. S. (2007a). Preparation of sulfated garlic polysaccharide and identification by spectrum. Food Science, 28, 91-93. https://doi.org/10.1016/S1872-2075(07)60055-7
Liu, Y. Q., & Huang, X. S. (2007b). Viscosity of garlic polysaccharide. Food Research and Development, 28, 14-15. https://doi.org/10.3969/j.issn.1005-6521.2007.12.005
Liu, Y., Zhao, J., Zhao, Y., Zong, S., Tian, Y., Chen, S., Li, M., Liu, H., Zhang, Q., Jing, X., Sun, B., Wang, H., Sun, T., & Yang, C. (2019). Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer. Journal of Cellular and Molecular Medicine, 23(2), 750-760.
Livingston, D. P., III, Chatterton, N. J., & Harrison, P. A. (1993). Structure and quantity of fructan oligomers in oat (Avena spp.). New Phytologist, 123(4), 725-734. https://doi.org/10.1111/j.1469-8137.1993.tb03783.x
Lo, T. C. T., Chang, C. A., Chiu, K. H., Tsay, P. K., & Jen, J. F. (2011). Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydrate Polymers, 86(1), 320-327. https://doi.org/10.1016/j.carbpol.2011.04.056
Lo, T. C. T., Jiang, Y. H., Chao, A. L. J., & Chang, C. A. (2007). Use of statistical methods to find the polysaccharide structural characteristics and the relationships between monosaccharide composition ratio and macrophage stimulatory activity of regionally different strains of Lentinula edodes. Analytica Chimica Acta, 584(1), 50-56. https://doi.org/10.1016/j.aca.2006.10.051
Lohner, S., Jakobik, V., Mihályi, K., Soldi, S., Vasileiadis, S., Theis, S., Sailer, M., Sieland, C., Berényi, K., Boehm, G., & Decsi, T. (2018). Inulin-type fructan supplementation of 3-to 6-year-old children is associated with higher fecal Bifidobacterium concentrations and fewer febrile episodes requiring medical attention. The Journal of Nutrition, 148(8), 1300-1308. https://doi.org/10.1093/jn/nxy120
Lomax, A. R., Cheung, L. V., Noakes, P. S., Miles, E. A., & Calder, P. C. (2015). Inulin-type β2-1 fructans have some effect on the antibody response to seasonal influenza vaccination in healthy middle-aged humans. Frontiers in Immunology, 6, 490. https://doi.org/10.3389/fimmu.2015.00490
Lomax, A. R., Cheung, L. V., Tuohy, K. M., Noakes, P. S., Miles, E. A., & Calder, P. C. (2012). β2-1 Fructans have a bifidogenic effect in healthy middle-aged human subjects but do not alter immune responses examined in the absence of an in vivo immune challenge: Results from a randomised controlled trial. British Journal of Nutrition, 108(10), 1818-1828. https://doi.org/10.1017/S0007114511007276
Loo, Y. M., & Gale, M., Jr. (2011). Immune signaling by RIG-I-like receptors. Immunity, 34(5), 680-692. https://doi.org/10.1016/j.immuni.2011.05.003
Lopes, S. M., Krausová, G., Carneiro, J. W., Gonçalves, J. E., Gonçalves, R. A., & de Oliveira, A. J. (2017). A new natural source for obtainment of inulin and fructooligosaccharides from industrial waste of Stevia rebaudiana bertoni. Food Chemistry, 225, 154-161. https://doi.org/10.1016/j.foodchem.2016.12.100
Lopes, S. M., Krausová, G., Rada, V., Gonçalves, J. E., Gonçalves, R. A., & de Oliveira, A. J. (2015). Isolation and characterization of inulin with a high degree of polymerization from roots of Stevia rebaudiana (Bert.) Bertoni. Carbohydrate Research, 411, 15-21. https://doi.org/10.1016/j.carres.2015.03.018
Lopez, M. G., Mancilla-Margalli, N. A., & Mendoza-Diaz, G. (2003). Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51(27), 7835-7840. https://doi.org/10.1021/jf030383v
López-Molina, D., Navarro-Martínez, M. D., Rojas-Melgarejo, F., Hiner, A. N., Chazarra, S., & Rodríguez-López, J. N. (2005). Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry, 66(12), 1476-1484. https://doi.org/10.1016/j.phytochem.2005.04.003
López-Velázquez, G., Parra-Ortiz, M., Mora, I. D. L. M. D. L., García-Torres, I., Enríquez-Flores, S., Alcántara-Ortigoza, M. A., Angel, A., Velázquez-Aragón, J., Ortiz-Hernández, R., Cruz-Rubio, J., Villa-Barragán, P., Jiménez-Gutiérrez, C., & Gutiérrez-Castrellón, P. (2015). Effects of fructans from Mexican agave in newborns fed with infant formula: A randomized controlled trial. Nutrients, 7(11), 8939-8951. https://doi.org/10.3390/nu7115442
Losso, J. N., & Nakai, S. (1997). Molecular size of garlic fructooligosaccharides and fructopolysaccharides by matrix-assisted laser desorption ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 45(11), 4342-4346. https://doi.org/10.1021/jf970433u
Lu, X. M. (2017). Study on formation mechanism and function of black garlic oligosaccharides (PhD dissertation). Shandong Agricultural University.
Lu, X. M., Li, N. Y., Qiao, X. G., Qiu, Z. C., & Liu, P. L. (2018). Effects of thermal treatment on polysaccharide degradation during black garlic processing. LWT-Food Science and Technology, 95, 223-229. https://doi.org/10.1016/j.lwt.2018.04.059
Lv, W., Zeng, Z. L., Dai, Z. K., & Hao, C. Q. (2009). Extraction and structural analysis of garlic polysaccharide. Food Science, 30, 83-87. https://doi.org/10.1360/972009-470
Ma, X. L., Meng, L., Sun, L., & Li, X. X. (2009). Determination of monosaccharide compositions and contents in polysaccharide of garlic by HPLC. Chinese Journal of Modern Applied Pharmacy, 26, 585-587. https://doi.org/10.2009/07.025
Ma, X. L., Meng, L., Sun, L., Li, X. X., & Lv, C. J. (2010). Study on monosaccharide components in garlic polysaccharide based on high performance capillary electrophoresis. Shizhenguoyiguoyao, 21, 1259-1260. https://doi.org/10.3969/j.issn.1008-0805.2010.05.110
Macpherson, A. J., & Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 303(5664), 1662-81665. https://doi.org/10.1126/science.1091334
Macpherson, G., Milling, S., Yrlid, U., Cousins, L., Turnbull, E., & Huang, F. P. (2004). Uptake of antigens from the intestine by dendritic cells. Annals of the New York Academy of Sciences, 1029(1), 75-82. https://doi.org/10.1196/annals.1309.010
Maier, M., Reusch, D., Bruggink, C., Bulau, P., Wuhrer, M., & Mølhøj, M. (2016). Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N-glycans from heterogeneously glycosylated IgGs. Journal of Chromatography B, 1033, 342-352. https://doi.org/10.1016/j.jchromb.2016.08.001
Mandracchia, D., Tripodo, G., Latrofa, A., & Dorati, R. (2014). Amphiphilic inulin-D-α-tocopherol succinate (INVITE) bioconjugates for biomedical applications. Carbohydrate Polymers, 103, 46-54. https://doi.org/10.1016/j.carbpol.2013.11.056
Manimaran, D. R., Sugapriya, G., Mahima, S., Sivamani, S., Sivarajasekar, N., & Prabhu, S. V. (2021). Response surface analysis and optimization of inulin extraction from garlic. Biomass Conversion and Biorefinery, , https://doi.org/10.1007/s13399-021-01953-5
Mantzouridou, F., Spanou, A., & Kiosseoglou, V. (2012). An inulin-based dressing emulsion as a potential probiotic food carrier. Food Research International, 46(1), 260-269. https://doi.org/10.1016/j.foodres.2011.12.016
Mao, B., Li, D., Zhao, J., Liu, X., Gu, Z., Chen, Y. Q., Zhang, H., & Chen, W. (2015a). Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice. Journal of Agricultural and Food Chemistry, 63(3), 856-863. https://doi.org/10.1021/jf505156h
Mao, B., Li, D., Zhao, J., Liu, X., Gu, Z., Chen, Y. Q., Zhang, H., & Chen, W. (2015b). In vitro fermentation of fructooligosaccharides with human gut bacteria. Food & Function, 6(3), 947-954. https://doi.org/10.1039/c4fo01082e
Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., German, J. B., Lebrilla, C. B., & Mills, D. A. (2010). Consumption of human milk oligosaccharides by gut-related microbes. Journal of Agricultural and Food Chemistry, 58(9), 5334-5340. https://doi.org/10.1021/jf9044205
Markosyan, A. A., Abelyan, L. A., Adamyan, M. O., Ekazhev, Z. D., Akopyan, Z. I., & Abelyan, V. A. (2007). Production of fructooligosaccharide syrup from sucrose in combination with palatinose and trehalose. Applied Biochemistry and Microbiology, 43(4), 383-389. https://doi.org/10.1134/S0003683807040047
Márquez-Aguirre, A. L., Camacho-Ruiz, R. M., Arriaga-Alba, M., Padilla-Camberos, E., Kirchmayr, M. R., Blasco, J. L., & González-Avila, M. (2013). Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice. Food & Function, 4(8), 1237-1244. https://doi.org/10.1039/C3FO60083A
Márquez-Aguirre, A. L., Camacho-Ruíz, R. M., Gutiérrez-Mercado, Y. K., Padilla-Camberos, E., González-Ávila, M., Gálvez-Gastélum, F. J., Díaz-Martínez, N. E., & Ortuño-Sahagún, D. (2016). Fructans from Agave tequilana with a lower degree of polymerization prevent weight gain, hyperglycemia and liver steatosis in high-fat diet-induced obese mice. Plant Foods for Human Nutrition, 71(4), 416-421. https://doi.org/10.1007/s11130-016-0578-x
Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M., & Mackay, C. R. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282-1286. https://doi.org/10.1038/nature08530
Matia-Merino, L., Lau, K., & Dickinson, E. (2004). Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids, 18(2), 271-281. https://doi.org/10.1016/S0268-005X(03)00083-3
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107-118. https://doi.org/10.1016/j.cell.2005.05.007
Meng, Y., Xu, Y., Chang, C., Qiu, Z., Hu, J., Wu, Y., Zhang, B., & Zheng, G. (2020). Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula. International Journal of Biological Macromolecules, 163, 1677-1686. https://doi.org/10.1016/j.ijbiomac.2020.09.117
Meyer, D., Bayarri, S., Tárrega, A., & Costell, E. (2011). Inulin as texture modifier in dairy products. Food Hydrocolloids, 25(8), 1881-1890. https://doi.org/10.1016/j.foodhyd.2011.04.012
Miramontes-Corona, C., Escalante, A., Delgado, E., Corona-González, R. I., Vázquez-Torres, H., & Toriz, G. (2020). Hydrophobic agave fructans for sustained drug delivery to the human colon. Reactive and Functional Polymers, 146, 104396. https://doi.org/10.1016/j.reactfunctpolym.2019.104396
Mistry, R. H., Liu, F., Borewicz, K., Lohuis, M. A., Smidt, H., Verkade, H. J., & Tietge, U. J. (2020). Long-term β-galacto-oligosaccharides supplementation decreases the development of obesity and insulin resistance in mice fed a western-type diet. Molecular Nutrition & Food Research, 64(12), 1900922. https://doi.org/10.1002/mnfr.201900922
Monti, L., Cattaneo, T. M. P., Orlandi, M., & Curadi, M. C. (2015). Capillary electrophoresis of sialylated oligosaccharides in milk from different species. Journal of Chromatography A, 1409, 288-291. https://doi.org/10.1016/j.chroma.2015.07.076
Moon, J. S., Shin, S. Y., Choi, H. S., Joo, W., Cho, S. K., Li, L., Kang, J.-H., Kim, T.-J., & Han, N. S. (2015). In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydrate Polymers, 131, 50-56. https://doi.org/10.1016/j.carbpol.2015.05.022
Morales, V., Corzo, N., & Sanz, M. L. (2008). HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups. Food Chemistry, 107(2), 922-928. https://doi.org/10.1016/j.foodchem.2007.08.050
Moreno-Vilet, L., Garcia-Hernandez, M. H., Delgado-Portales, R. E., Corral-Fernandez, N. E., Cortez-Espinosa, N., Ruiz-Cabrera, M. A., & Portales-Perez, D. P. (2014). In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. International Journal of Biological Macromolecules, 63, 181-187. https://doi.org/10.1016/j.ijbiomac.2013.10.039
Mu, S., Yang, W., & Huang, G. (2021). Antioxidant activities and mechanisms of polysaccharides. Chemical Biology & Drug Design, 97(3), 628-632. https://doi.org/10.1111/cbdd.13798
Mueller, M., Reiner, J., Fleischhacker, L., Viernstein, H., Loeppert, R., & Praznik, W. (2016). Growth of selected probiotic strains with fructans from different sources relating to degree of polymerization and structure. Journal of Functional Foods, 24, 264-275. https://doi.org/10.1016/j.jff.2016.04.010
Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: A review. Carbohydrate Polymers, 68(3), 587-597. https://doi.org/10.1016/j.carbpol.2006.12.011
Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53(1), 154-157. https://doi.org/10.1016/j.bej.2010.09.012
Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 76-81. https://doi.org/10.1016/j.molcatb.2009.01.005
Muthana, S. M., Campbell, C. T., & Gildersleeve, J. C. (2012). Modifications of glycans: Biological significance and therapeutic opportunities. ACS Chemical Biology, 7(1), 31-43. https://doi.org/10.1021/cb2004466
Nemeth, C., Andersson, A. A., Andersson, R., Mangelsen, E., Sun, C., & Aman, P. (2014). Relationship of grain fructan content to degree of polymerisation in different barleys. Food and Nutrition Sciences, 5(6), 581-589. https://doi.org/10.4236/fns.2014.56068
Newburg, D. S., Ko, J. S., Leone, S., & Nanthakumar, N. N. (2016). Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3′-, 4-, and 6′-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. The Journal of Nutrition, 146(2), 358-367. https://doi.org/10.3945/jn.115.220749
Neyrinck, A. M., Alexiou, H., & Delzenne, N. M. (2004). Kupffer cell activity is involved in the hepatoprotective effect of dietary oligofructose in rats with endotoxic shock. The Journal of Nutrition, 134(5), 1124-1129. https://doi.org/10.1038/sj.ijo.0802613
Ni, X. (2011). The antiviral and immune-enhancing activities comparison of garlic polysaccharides and their sulfated derivants (PhD dissertation). Nanjing Agricultural University.
Nie, Y., Luo, F., Wang, L., Yang, T., Shi, L., Li, X., Shen, J., Xu, W., Guo, T., & Lin, Q. (2017). Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice. Food & Function, 8(11), 4028-4041. https://doi.org/10.1039/C7FO00654C
Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A., Vyas, J. M., Boes, M., Ploegh, H. L., Fox, J. G., Littman, D. R., & Reinecker, H. C. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 307(5707), 254-258. https://doi.org/10.1126/science.1102901
Ohsumi, C., & Hayashi, T. (1994). Carbohydrate analysis of an interspecific hybrid between onion and garlic. Bioscience, Biotechnology, and Biochemistry, 58(5), 959-960. https://doi.org/10.1271/bbb.58.959
Oliveros, E., Ramirez, M., Vazquez, E., Barranco, A., Gruart, A., Delgado-Garcia, J. M., Buck, R., Rueda, R., & Martin, M. J. (2016). Oral supplementation of 2′-fucosyllactose during lactation improves memory and learning in rats. The Journal of Nutritional Biochemistry, 31, 20-27. https://doi.org/10.1016/j.jnutbio.2015.12.014
Osorio, F., & e Sousa, C. R. (2011). Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity, 34(5), 651-664. https://doi.org/10.1016/j.immuni.2011.05.001
Østrem, L., Rapacz, M., Jørgensen, M., & Höglind, M. (2011). Effect of developmental stage on carbohydrate accumulation patterns during winter of timothy and perennial ryegrass. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 61(2), 153-163. https://doi.org/10.1080/09064711003652522
Ostrosky-Zeichner, L., Vitale, R. G., & Nucci, M. (2012). New serological markers in medical mycology:(1, 3)-β-D-glucan and Aspergillus galactomannan. Infectio, 16, 59-63. https://doi.org/10.1016/S0123-9392(12)70028-0
Ou, Y. F., Yin, P. H., Zhao, L., & Huang, X. S. (2006). Determination of monsaccharides in the garlic polysaccharide using pulsed amperometric ion chromatography. Chinese Journal of Spectroscopy Laboratory, 23, 629-632. https://doi.org/10.1109/INFOCOM.2006.241
Oursel, S., Cholet, S., Junot, C., & Fenaille, F. (2017). Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry. Journal of Chromatography B, 1071, 49-57. https://doi.org/10.1016/j.jchromb.2017.03.028
Padilla-Camberos, E., Barragán-Álvarez, C. P., Diaz-Martinez, N. E., Rathod, V., & Flores-Fernández, J. M. (2018). Effects of Agave fructans (Agave tequilana Weber var. azul) on body fat and serum lipids in obesity. Plant Foods for Human Nutrition, 73(1), 34-39. https://doi.org/10.1007/s11130-018-0654-5
Pan, D., Wang, L., Chen, C., Teng, B., Wang, C., Xu, Z., Hu, B., & Zhou, P. (2012). Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chemistry, 135(3), 1097-1103. https://doi.org/10.1016/j.foodchem.2012.05.071
Panda, B. C., Mondal, S., Devi, K. S. P., Maiti, T. K., Khatua, S., Acharya, K., & Islam, S. S. (2015). Pectic polysaccharide from the green fruits of Momordica charantia (Karela): Structural characterization and study of immunoenhancing and antioxidant properties. Carbohydrate Research, 401, 24-31. https://doi.org/10.1016/j.carres.2014.10.015
Pan, S., & Wu, S. (2014). Cellulase-assisted extraction and antioxidant activity of the polysaccharides from garlic. Carbohydrate Polymers, 111, 606-609. https://doi.org/10.1016/j.carbpol.2014.05.022
Paradossi, G., Chiessi, E., Barbiroli, A., & Fessas, D. (2002). Xanthan and glucomannan mixtures: Synergistic interactions and gelation. Biomacromolecules, 3(3), 498-504. https://doi.org/10.1021/bm010163v
Park, E., Yang, H., Kim, Y., & Kim, J. (2012). Analysis of oligosaccharides in beer using MALDI-TOF-MS. Food Chemistry, 134(3), 1658-1664. https://doi.org/10.1016/j.foodchem.2012.03.069
Peng, L., Qiao, S., Xu, Z., Guan, F., Ding, Z., Gu, Z., Zhang, L., & Shi, G. (2015). Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes. Carbohydrate Polymers, 133, 104-109. https://doi.org/10.1016/j.carbpol.2015.07.014
Pereira, D. I., & Gibson, G. R. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Critical Reviews in Biochemistry and Molecular Biology, 37(4), 259-281. https://doi.org/10.1080/10409230290771519
Pereira, L., Amado, A. M., Critchley, A. T., Van de Velde, F., & Ribeiro-Claro, P. J. (2009). Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids, 23(7), 1903-1909. https://doi.org/10.1016/j.foodhyd.2008.11.014
Perera, N., Yang, F. L., Chern, J., Chiu, H. W., Hsieh, C. Y., Li, L. H., Zhang, Y.-L., Hua, K.-F., & Wu, S. H. (2018). Carboxylic and O-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: A novel TLR4 specific immunostimulator from Auricularia auricula-judae. Chemical Communications, 54(51), 6995-6998. https://doi.org/10.1039/C7CC09927D
Petersen, A., Heegaard, P. M., Pedersen, A. L., Andersen, J. B., Sørensen, R. B., Frøkiaer, H., Lahtinen, S. J., Ouwehand, A. C., Poulsen, M., & Licht, T. R. (2009). Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiology, 9(1), 1-11. https://doi.org/10.1186/1471-2180-9-245
Petkevičius, S., Thomsen, L. E., Knudsen, K. B., Murrell, K. D., Roepstorff, A., & Boes, J. (2007). The effect of inulin on new and on patent infections of Trichuris suis in growing pigs. Parasitology, 134(1), 121-127. https://doi.org/10.1017/S0031182006000977
Petkova, N. T., Sherova, G., & Denev, P. P. (2018). Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions. International Food Research Journal, 25(5), 1876-1884.
Petkova, N., Ognyanov, M., Todorova, M., & Denev, P. (2015). Ultrasound-assisted extraction and characterisation of inulin-type fructan from roots of elecampane (Inula helenium L.). Acta Scientifica Naturalis, 1(1), 225-235. https://doi.org/10.1177/1934578X1701200207
Petkova, N., Vrancheva, R., Mihaylova, D., Ivanov, I., Pavlov, A., & Denev, P. (2015). Antioxidant activity and fructan content in root extracts from elecampane (Inula helenium L.). Journal of BioScience & Biotechnology, 4(1), 101-107.
Pitarresi, G., Tripodo, G., Calabrese, R., Craparo, E. F., Licciardi, M., & Giammona, G. (2008). Hydrogels for potential colon drug release by thiol-ene conjugate addition of a new inulin derivative. Macromolecular Bioscience, 8(10), 891-902. https://doi.org/10.1002/mabi.200800043
Plaza-Díaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M., & Gil, A. (2017). Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients, 9(6), 555. https://doi.org/10.3390/nu9060555
Politi, M., Alvaro-Blanco, J., Groves, P., Prieto, A., Leal, J. A., Cañada, F. J., & Jiménez-Barbero, J. (2006). Screening of garlic water extract for binding activity with cholera toxin B pentamer by NMR spectroscopy-an old remedy giving a new surprise. European Journal of Organic Chemistry, 2006(9), 2067-2073. https://doi.org/10.1002/ejoc.200500875
Pool-Zobel, B. L. (2005). Inulin-type fructans and reduction in colon cancer risk: Review of experimental and human data. British Journal of Nutrition, 93(S1), S73-S90. https://doi.org/10.1079/BJN20041349
Pool-Zobel, B., Van Loo, J., Rowland, I., & Roberfroid, M. B. (2002). Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. British Journal of Nutrition, 87(S2), S273-S281. https://doi.org/10.1079/BJNBJN/2002548
Porcheron, G., Kut, E., Canepa, S., Maurel, M. C., & Schouler, C. (2011). Regulation of fructooligosaccharide metabolism in an extra-intestinal pathogenic Escherichia coli strain. Molecular Microbiology, 81(3), 717-733. https://doi.org/10.1111/j.1365-2958.2011.07725.x
Prata, M. B., Mussatto, S. I., Rodrigues, L. R., & Teixeira, J. A. (2010). Fructooligosaccharide production by Penicillium expansum. Biotechnology Letters, 32(6), 837-840. https://doi.org/10.1007/s10529-010-0231-y
Praznik, W., Cieslik, E., & Huber, A. (2003). Fructans: Occurrence and application in food. In Tomasik, P. (Ed.), Chemical and functional properties of food saccharides (pp. 197-215). CRC Press.
Prioult, G., Pecquet, S., & Fliss, I. (2004). Stimulation of interleukin-10 production by acidic β-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases. Clinical and Diagnostic Laboratory Immunology, 11(2), 266-271. https://doi.org/10.1128/CDLI.11.2.266-271.2004
Qiang, X., Chao, Y. L., & Wang, Q. B. (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77(3), 435-441. https://doi.org/10.1016/j.carbpol.2009.03.016
Qin, T., Chen, J., Wang, D., Hu, Y., Zhang, J., Wang, M., Qiu, S., Gao, Z., liu, R., Yu, Y., Huang, Y., Wang, Q., & Wang, Q. (2013). Selenylation modification can enhance immune-enhancing activity of Chinese angelica polysaccharide. Carbohydrate Polymers, 95(1), 183-187. https://doi.org/10.1016/j.carbpol.2013.02.072
Qiu, Z., Zheng, Z., Zhang, B., Sun-Waterhouse, D., & Qiao, X. (2020). Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Comprehensive Reviews in Food Science and Food Safety, 19(2), 801-834. https://doi.org/10.1111/1541-4337.12529
Rahman, K. (2003). Garlic and aging: New insights into an old remedy. Ageing Research Reviews, 2(1), 39-56. https://doi.org/10.1016/S1568-1637(02)00049-1
Ramirez-Farias, C., Slezak, K., Fuller, Z., Duncan, A., Holtrop, G., & Louis, P. (2008). Effect of inulin on the human gut microbiota: Stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition, 101(4), 541-550. https://doi.org/10.1017/S0007114508019880
Raish, M., Ahmad, A., Jan, B. L., Alkharfy, K. M., Ansari, M. A., Mohsin, K., al Jenoobi, F., & Al-Mohizea, A. (2016). Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats. International Journal of Biological Macromolecules, 91, 394-399. https://doi.org/10.1016/j.ijbiomac.2016.05.090
Ray, B. (2006). Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydrate Polymers, 66(3), 408-416. https://doi.org/10.1016/j.carbpol.2006.03.027
Rayman, M. P. (2000). The importance of selenium to human health. Lancet, 356(9225), 233-241. https://doi.org/10.1016/S0140-6736(00)02490-9
Ren, G., Xu, L., Lu, T., & Yin, J. (2018). Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. International Journal of Biological Macromolecules, 115, 1202-1210. https://doi.org/10.1016/j.ijbiomac.2018.04.132
Rendón-Huerta, J. A., Juárez-Flores, B., Pinos-Rodríguez, J. M., Aguirre-Rivera, J. R., & Delgado-Portales, R. E. (2012). Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats. Plant Foods for Human Nutrition, 67(1), 64-70. https://doi.org/10.1007/s11130-011-0266-9
Rivera-Huerta, M., Lizárraga-Grimes, V. L., Castro-Torres, I. G., Tinoco-Méndez, M., Macías-Rosales, L., Sánchez-Bartéz, F., Tapia-Pérez, G. G., Romero-Romero, L., & Gracia-Mora, M. I. (2017). Functional effects of prebiotic fructans in colon cancer and calcium metabolism in animal models. BioMed Research International, 2017, 9758982. https://doi.org/10.1155/2017/9758982
Roberfroid, M. B. (2005). Introducing inulin-type fructans. British Journal of Nutrition, 93(S1), S13-S25. https://doi.org/10.1079/BJN20041350
Roberfroid, M. B. (2007). Inulin-type fructans: Functional food ingredients. The Journal of Nutrition, 137(11), 2493S-2502S. https://doi.org/10.1201/9780203504932
Rodrigues, H. G., Sato, F. T., Curi, R., & Vinolo, M. A. (2016). Fatty acids as modulators of neutrophil recruitment, function and survival. European Journal of Pharmacology, 785, 50-58. https://doi.org/10.1016/j.ejphar.2015.03.098
Roller, M., Clune, Y., Collins, K., Rechkemmer, G., & Watzl, B. (2007). Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients. British Journal of Nutrition, 97(4), 676-684. https://doi.org/10.1017/S0007114507450292
Roller, M., Femia, A. P., Caderni, G., Rechkemmer, G., & Watzl, B. (2004). Intestinal immunity of rats with colon cancer is modulated by oligofructose-enriched inulin combined with Lactobacillus rhamnosus and Bifidobacterium lactis. British Journal of Nutrition, 92(6), 931-938. https://doi.org/10.1079/BJN20041289
Roller, M., Rechkemmer, G., & Watzl, B. (2004). Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. The Journal of Nutrition, 134(1), 153-156. https://doi.org/10.3164/jcbn.35.71
Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S., & Matteuzzi, D. (2005). Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Applied Environmental Microbiology, 71(10), 6150-6158. https://doi.org/10.1128/AEM.71.10.6150-6158.2005
Ruiz-Aceituno, L., García-Sarrió, M. J., Alonso-Rodriguez, B., Ramos, L., & Sanz, M. L. (2016). Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chemistry, 196, 1156-1162. https://doi.org/10.1016/j.foodchem.2015.10.046
Ruiz-Cano, D., Pérez-Llamas, F., Frutos, M. J., Arnao, M. B., Espinosa, C., López-Jiménez, J. Á., Castillo, J., & Zamora, S. (2014). Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chemistry, 160, 134-140. https://doi.org/10.1016/j.foodchem.2014.03.091
Santiago-García, P. A., & López, M. G. (2014). Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice. Food & Function, 5(12), 3311-3319. https://doi.org/10.1039/C4FO00561A
Scholz-Ahrens, K. E., & Schrezenmeir, J. (2002). Inulin, oligofructose and mineral metabolism-Experimental data and mechanism. British Journal of Nutrition, 87(S2), S179-S186. https://doi.org/10.1079/BJNBJN/2002535
Schönfeld, P., & Wojtczak, L. (2016). Short-and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57(6), 943-954. https://doi.org/10.1194/jlr.R067629
Schroeder, F. A., Lin, C. L., Crusio, W. E., & Akbarian, S. (2007). Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological Psychiatry, 62(1), 55-64. https://doi.org/10.1016/j.biopsych.2006.06.036
Schütz, K., Carle, R., & Schieber, A. (2006). Taraxacum-A review on its phytochemical and pharmacological profile. Journal of Ethnopharmacology, 107(3), 313-323. https://doi.org/10.1016/j.jep.2006.07.021
Shalini, R., Abinaya, G., Saranya, P., & Antony, U. (2017). Growth of selected probiotic bacterial strains with fructans from Nendran banana and garlic. LWT-Food Science and Technology, 83, 68-78. https://doi.org/10.1016/j.lwt.2017.03.059
Shalini, R., Krishna, J., Sankaranarayanan, M., & Antony, U. (2021). Enhancement of fructan extraction from garlic and fructooligosaccharide purification using an activated charcoal column. LWT-Food Science and Technology, 148, 111703. https://doi.org/10.1016/j.lwt.2021.111703
Shang, D., Zhang, J., Wen, L., Li, Y., & Cui, Q. (2009). Preparation, characterization, and antiproliferative activities of the Se-containing polysaccharide SeGLP-2B-1 from Se-enriched Ganoderma lucidum. Journal of Agricultural and Food Chemistry, 57(17), 7737-7742. https://doi.org/10.1021/jf9019344
Shang, H. M., Zhou, H. Z., Yang, J. Y., Li, R., Song, H., & Wu, H. X. (2018). In vitro and in vivo antioxidant activities of inulin. PLoS ONE, 13(2), e0192273. https://doi.org/10.1371/journal.pone.0192273
Shao, J. H., Li, T., & Yang, J. (2013). Study on microwave-assisted extraction of garlic polysaccharide and its antioxidant activity. Acta Agriculturae Zhejiangensis, 25, 868-872. https://doi.org/10.3969/j.issn.1004-1524.2013.04.37
Shao, X., Sun, C., Tang, X., Zhang, X., Han, D., Liang, S., Qu, R., Hui, X., Shan, Y., Hu, L., Fang, H., Zhang, H., Wu, X., & Chen, C. (2020). Anti-inflammatory and intestinal microbiota modulation properties of Jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. Journal of Agricultural and Food Chemistry, 68(44), 12295-12309. https://doi.org/10.1021/acs.jafc.0c04773
Shida, K., Kiyoshima-Shibata, J., Nagaoka, M., Watanabe, K., & Nanno, M. (2006). Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. Journal of Dairy Science, 89(9), 3306-3317. https://doi.org/10.3168/jds.S0022-0302(06)72367-0
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., Shakeel, A., Ansari, A., & Niazi, S. (2016). Inulin: Properties, health benefits and food applications. Carbohydrate Polymers, 147, 444-454. https://doi.org/10.1016/j.carbpol.2016.04.020
Singh, R. S., Singh, R. P., & Kennedy, J. F. (2016). Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. International Journal of Biological Macromolecules, 85, 565-572. https://doi.org/10.1016/j.ijbiomac.2016.01.026
Singh, R. S., Singh, T., & Larroche, C. (2019). Biotechnological applications of inulin-rich feedstocks. Bioresource Technology, 273, 641-653. https://doi.org/10.1016/j.biortech.2018.11.031
Sołowiej, B., Glibowski, P., Muszyński, S., Wydrych, J., Gawron, A., & Jeliński, T. (2015). The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocolloids, 44, 1-11. https://doi.org/10.1016/j.foodhyd.2014.08.022
Sosa-Herrera, M. G., Martínez-Padilla, L. P., Delgado-Reyes, V. A., & Torres-Robledo, A. (2016). Effect of agave fructans on bulk and surface properties of sodium caseinate in aqueous media. Food Hydrocolloids, 60, 199-205. https://doi.org/10.1016/j.foodhyd.2016.03.033
Sun-Waterhouse, D., Melton, L. D., O'Connor, C. J., Kilmartin, P. A., & Smith, B. G. (2008). Effect of apple cell walls and their extracts on the activity of dietary antioxidants. Journal of Agricultural and Food Chemistry, 56(1), 289-295. https://doi.org/10.1021/jf072670v
Sun-Waterhouse, D., Teoh, A., Massarotto, C., Wibisono, R., & Wadhwa, S. (2010). Comparative analysis of fruit-based functional snack bars. Food Chemistry, 119(4), 1369-1379. https://doi.org/10.1016/j.foodchem.2009.09.016
Sun-Waterhouse, D., Wadhwa, S. S., & Waterhouse, G. I. N. (2013). Spray-drying microencapsulation of polyphenol bioactives: A comparative study using different natural fibre polymers as encapsulants. Food & Bioprocess Technology, 6(9), 2376-2388. https://doi.org/10.1007/s11947-012-0946-y
Tahiri, M., Tressol, J. C., Arnaud, J., Bornet, F. R., Bouteloup-Demange, C., Feillet-Coudray, C., Brandolini, M., Ducros, V., Pépin, D., Brouns, F., Roussel, A. M., Rayssiguier, Y., & Coudray, C. (2003). Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: A stable-isotope study. The American Journal of Clinical Nutrition, 77(2), 449-457. https://doi.org/10.1051/rnd:2003017
Tang, H. L., Chen, C., Wang, S. K., & Sun, G. J. (2015). Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. International Journal of Biological Macromolecules, 77, 235-242. https://doi.org/10.1016/j.ijbiomac.2015.03.026
Tao, Y., & Xu, W. (2008). Microwave-assisted solubilization and solution properties of hyperbranched polysaccharide. Carbohydrate Research, 343(18), 3071-3078. https://doi.org/10.1016/j.carres.2008.09.009
Tao, Y., Zhang, L., Yan, F., & Wu, X. (2007). Chain conformation of water-insoluble hyperbranched polysaccharide from fungus. Biomacromolecules, 8(7), 2321-2328. https://doi.org/10.1021/bm070335+
Taper, H. S., & Roberfroid, M. B. (2005). Possible adjuvant cancer therapy by two prebiotics-inulin or oligofructose. In Vivo, 19(1), 201-204. https://doi.org/10.1089/hum.2005.16.139
Tárrega, A., Rocafull, A., & Costell, E. (2010). Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. LWT-Food Science and Technology, 43(3), 556-562. https://doi.org/10.1016/j.lwt.2009.10.002
Ten Bruggencate, S. J., Bovee-Oudenhoven, I. M., Lettink-Wissink, M. L., & Van der Meer, R. (2005). Dietary fructooligosaccharides increase intestinal permeability in rats. The Journal of Nutrition, 135(4), 837-842. https://doi.org/10.1093/jn/135.4.837
Tokuoka, M., Honda, C., Totsuka, A., Shindo, H., & Hosaka, M. (2017). Analysis of the oligosaccharides in Japanese rice wine, sake, by hydrophilic interaction liquid chromatography-time-of-flight/mass spectrometry. Journal of Bioscience and Bioengineering, 124(2), 171-177. https://doi.org/10.1016/j.jbiosc.2017.03.010
Tsukamoto, S., Okamoto, K., Inanaga, J., & Karasaki, Y. (2008). Purification, characterization and biological activities of a garlic oligosaccharide. Journal of UOEH, 30(2), 147-157. https://doi.org/10.7888/juoeh.30.147
Turvey, S. E., & Broide, D. H. (2010). Innate immunity. Journal of Allergy and Clinical Immunology, 125(2), S24-S32. https://doi.org/10.1016/S0952-7915(02)00019-5
Ueno, K., Sonoda, T., Yoshida, M., Shiomi, N., & Onodera, S. (2018). Purification, characterization, and functional analysis of a novel 6G&1-FEH mainly hydrolyzing neokestose from asparagus. Journal of Experimental Botany, 69(18), 4295-4308. https://doi.org/10.1093/jxb/ery234
Valcheva, R., Koleva, P., Martínez, I., Walter, J., Gänzle, M. G., & Dieleman, L. A. (2019). Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes, 10(3), 334-357. https://doi.org/10.1080/19490976.2018.1526583
Valcheva, R., Slingerland, B., Farrant, A., Gänzle, M. G., & Dieleman, L. A. (2009). 117 Prebiotics maintain biodiversity of the intestinal microbiota and reduce colitis in HLA-B27 transgenic rats. Gastroenterology, 136, A-21. https://doi.org/10.1016/S0016-5085(09)60100-1
Vandeputte, D., Falony, G., Vieira-Silva, S., Wang, J., Sailer, M., Theis, S., Verbeke, K., & Raes, J. (2017). Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 66(11), 1968-1974. https://doi.org/10.1136/gutjnl-2016-313271
Van De Wiele, T., Boon, N., Possemiers, S., Jacobs, H., & Verstraete, W. (2007). Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology, 102(2), 452-460. https://doi.org/10.1111/j.1365-2672.2006.03084.x
Van den Broek, L. A., Hinz, S. W., Beldman, G., Vincken, J. P., & Voragen, A. G. (2008). Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Molecular Nutrition & Food Research, 52(1), 146-163. https://doi.org/10.1002/mnfr.200700121
Van den Ende, W., De Coninck, B., & Van Laere, A. (2004). Plant fructan exohydrolases: A role in signaling and defense? Trends in Plant Science, 9(11), 523-528. https://doi.org/10.1016/j.tplants.2004.09.008
Van der Meulen, R., Avonts, L., & De Vuyst, L. (2004). Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Applied and Environmental Microbiology, 70(4), 1923-1930. https://doi.org/10.1128/AEM.70.4.1923-1930.2004
Van der Meulen, R., Makras, L., Verbrugghe, K., Adriany, T., & De Vuyst, L. (2006). In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Applied and Environmental Microbiology, 72(2), 1006-1012. https://doi.org/10.1128/AEM.72.2.1006-1012.2006
Van Loo, J., Clune, Y., Bennett, M., & Collins, J. K. (2005). The SYNCAN project: Goals, set-up, first results and settings of the human intervention study. British Journal of Nutrition, 93(S1), S91-S98. https://doi.org/10.1079/BJN20041353
Vaňková, K., & Polakovič, M. (2010). Optimization of single-column chromatographic separation of fructooligosaccharides. Process Biochemistry, 45(8), 1325-1329. https://doi.org/10.1016/j.procbio.2010.04.025
Veenashri, B. R., & Muralikrishna, G. (2011). In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans-A comparative study. Food Chemistry, 126(3), 1475-1481. https://doi.org/10.1016/j.foodchem.2010.11.163
Vereyken, I. J., Chupin, V., Hoekstra, F. A., Smeekens, S. C., & de Kruijff, B. (2003). The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophysical Journal, 84(6), 3759-3766. https://doi.org/10.1016/S0006-3495(03)75104-2
Vereyken, I. J., Chupin, V., Islamov, A., Kuklin, A., Hincha, D. K., & de Kruijff, B. (2003). The effect of fructan on the phospholipid organization in the dry state. Biophysical Journal, 85(5), 3058-3065. https://doi.org/10.1016/S0006-3495(03)74724-9
Vereyken, I. J., Van Kuik, J. A., Evers, T. H., Rijken, P. J., & de Kruijff, B. (2003). Structural requirements of the fructan-lipid interaction. Biophysical Journal, 84(5), 3147-3154. https://doi.org/10.1016/S0006-3495(03)70039-3
Verghese, M., Rao, D. R., Chawan, C. B., & Shackelford, L. (2002). Dietary inulin suppresses azoxymethane-induced preneoplastic aberrant crypt foci in mature Fisher 344 rats. The Journal of Nutrition, 132(9), 2804-2808. https://doi.org/10.1038/s.ijo.0802171
Verma, D. K., Patel, A. R., Thakur, M., Singh, S., Tripathy, S., Srivastav, P. P., Chávez-González, M. L., Gupta, A. K., & Aguilar, C. N. (2021). A review of the composition and toxicology of fructans, and their applications in foods and health. Journal of Food Composition and Analysis, 99, 103884. https://doi.org/10.1016/j.jfca.2021.103884
Verspreet, J., Dornez, E., Van den Ende, W., Delcour, J. A., & Courtin, C. M. (2015). Cereal grain fructans: Structure, variability and potential health effects. Trends in Food Science & Technology, 43(1), 32-42. https://doi.org/10.1016/j.tifs.2015.01.006
Vijn, I., & Smeekens, S. (1999). Fructan: More than a reserve carbohydrate? Plant physiology, 120(2), 351-360. https://doi.org/10.1104/pp.120.2.351
Vinderola, G., Matar, C., & Perdigon, G. (2005). Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: Involvement of toll-like receptors. Clinical and Diagnostic Laboratory Immunology, 12(9), 1075-1084. https://doi.org/10.1128/CDLI.12.9.1075-1084.2005
Vogt, L. M., Meyer, D., Pullens, G., Faas, M. M., Venema, K., Ramasamy, U., Schols, H. A., & de Vos, P. (2014). Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner. The Journal of Nutrition, 144(7), 1002-1008. https://doi.org/10.3945/jn.114.191643
Vogt, L., Meyer, D., Pullens, G., Faas, M., Smelt, M., Venema, K., Ramasamy, U., Schols, H. A., & De Vos, P. (2015). Immunological properties of inulin-type fructans. Critical Reviews in Food Science and Nutrition, 55(3), 414-436. https://doi.org/10.1080/10408398.2012.656772
Vogt, L., Ramasamy, U., Meyer, D., Pullens, G., Venema, K., Faas, M. M., Schols, H. A., & de Vos, P. (2013). Immune modulation by different types of β 2→1-fructans is toll-like receptor dependent. PLoS ONE, 8(7), e68367. https://doi.org/10.1371/journal.pone.0068367
Vos, A. P., M'rabet, L., Stahl, B., Boehm, G., & Garssen, J. (2007). Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Critical Reviews™ in Immunology, 27(2), 97-140. https://doi.org/10.1615/CritRevImmunol.v27.i2.10
Vulevic, J., Juric, A., Walton, G. E., Claus, S. P., Tzortzis, G., Toward, R. E., & Gibson, G. R. (2015). Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. British Journal of Nutrition, 114(4), 586-595. https://doi.org/10.1017/S0007114515001889
Walton, G. E., van den Heuvel, E. G., Kosters, M. H., Rastall, R. A., Tuohy, K. M., & Gibson, G. R. (2012). A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. British Journal of Nutrition, 107(10), 1466-1475. https://doi.org/10.1017/S0007114511004697
Wang, C. H., Lai, P., Chen, M. E., & Chen, H. L. (2008). Antioxidative capacity produced by Bifidobacterium-and Lactobacillus acidophilus-mediated fermentations of konjac glucomannan and glucomannan oligosaccharides. Journal of the Science of Food and Agriculture, 88(7), 1294-1300. https://doi.org/10.1002/jsfa.3226
Wang, D., Li, F. L., & Wang, S. A. (2016). A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydrate Polymers, 151, 1220-1226. https://doi.org/10.1016/j.carbpol.2016.06.059
Wang, F., Chen, Z. G., & Zhu, H. J. (2013). An efficient enzymatic modification of lily polysaccharide in ionic liquid under ultrasonic irradiation. Biochemical Engineering Journal, 79, 25-28. https://doi.org/10.1016/j.bej.2013.06.020
Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016, 5692852. https://doi.org/10.1155/2016/5692852
Wang, L., Li, Y., Zhu, L., Yin, R., Wang, R., Luo, X., Li, Y., Li, Y., & Chen, Z. (2016). Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro. International Journal of Biological Macromolecules, 88, 424-432. https://doi.org/10.1016/j.ijbiomac.2016.04.016
Wang, L., Zhang, H., Zhang, X., & Chen, Z. (2008). Purification and identification of a novel heteropolysaccharide RBPS2a with anti-complementary activity from defatted rice bran. Food Chemistry, 110(1), 150-155. https://doi.org/10.1016/j.foodchem.2008.01.041
Wang, Q., Wang, F., Xu, Z., & Ding, Z. (2017). Bioactive mushroom polysaccharides: A review on monosaccharide composition, biosynthesis and regulation. Molecules, 22(6), 955. https://doi.org/10.3390/molecules22060955
Wang, X., Wang, W., Wang, L., Yu, C., Zhang, G., Zhu, H., Wang, C., Zhao, S., Andy Hu, C.-A., & Liu, Y. (2019). Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide. Food & Function, 10(1), 479-489. https://doi.org/10.1039/c8fo02438c
Wang, Y., Guan, M., Zhao, X., & Li, X. (2018). Effects of garlic polysaccharide on alcoholic liver fibrosis and intestinal microflora in mice. Pharmaceutical Biology, 56(1), 325-332. https://doi.org/10.1080/13880209.2018.1479868
Wang, Y., Liu, Y., Yu, H., Zhou, S., Zhang, Z., Wu, D., Yan, M., Tang, Q., & Zhang, J. (2017). Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydrate Polymers, 167, 337-344. https://doi.org/10.1016/j.carbpol.2017.03.016
Wang, Y., Wei, X., & Jin, Z. (2009). Structure analysis of a neutral polysaccharide isolated from green tea. Food Research International, 42(5-6), 739-745. https://doi.org/10.1016/j.foodres.2009.03.011
Wang, Y., Zhang, N., Kan, J., Zhang, X., Wu, X., Sun, R., Tang, S., Liu, J., Qian, C., & Jin, C. (2019). Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydrate Polymers, 213, 89-99. https://doi.org/10.1016/j.carbpol.2019.02.090
Wang, Y., & Zhang, L. (2006). Chain conformation of carboxymethylated derivatives of (1→3)-β-D-glucan from Poria cocos sclerotium. Carbohydrate Polymers, 65(4), 504-509. https://doi.org/10.1016/j.carbpol.2006.02.014
Wang, Z., Xie, J., Shen, M., Nie, S., & Xie, M. (2018). Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends in Food Science & Technology, 74, 147-157. https://doi.org/10.1016/j.tifs.2018.02.010
Wasser, S. P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60(3), 258-274. https://doi.org/10.1007/s00253-002-1076-7
Weaver, C. M. (2005). Inulin, oligofructose and bone health: Experimental approaches and mechanisms. British Journal of Nutrition, 93(S1), S99-S103. https://doi.org/10.1079/BJN20041358
Weaver, C. M., & Liebman, M. (2002). Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis. British Journal of Nutrition, 88(S2), S225-S232. https://doi.org/10.1079/BJN2002687
Westphal, Y., Kühnel, S., de Waard, P., Hinz, S. W., Schols, H. A., Voragen, A. G., & Gruppen, H. (2010). Branched arabino-oligosaccharides isolated from sugar beet arabinan. Carbohydrate Research, 345(9), 1180-1189. https://doi.org/10.1016/j.carres.2010.03.042
Whisner, C. M., & Castillo, L. F. (2018). Prebiotics, bone and mineral metabolism. Calcified Tissue International, 102(4), 443-479. https://doi.org/10.1007/s00223-017-0339-3
Wu, D. T., Cheong, K. L., Deng, Y., Lin, P. C., Wei, F., Lv, X. J., Long, Z.-R., Zhao, J., Ma, S.-C., & Li, S. P. (2015). Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC. Carbohydrate Polymers, 134, 12-19. https://doi.org/10.1016/j.carbpol.2015.07.052
Wu, S. (2018). Hypolipidaemic and anti-lipidperoxidant activities of Ganoderma lucidum polysaccharide. International Journal of Biological Macromolecules, 118, 2001-2005. https://doi.org/10.1016/j.ijbiomac.2018.07.082
Wu, S., Tao, N., German, J. B., Grimm, R., & Lebrilla, C. B. (2010). Development of an annotated library of neutral human milk oligosaccharides. Journal of Proteome Research, 9(8), 4138-4151. https://doi.org/10.1021/pr100362f
Wu, S., Zhang, J., Jiang, C., Wang, S., Que, R., & An, L. (2020). Up-regulation of neprilysin mediates the protection of fructo-oligosaccharides against Alzheimer's disease. Food & Function, 11(7), 6565-6572. https://doi.org/10.1039/D0FO00161A
Wu, X., Dai, H., Huang, L., Gao, X., Tsim, K. W., & Tu, P. (2006). A fructan, from Radix ophiopogonis, stimulates the proliferation of cultured lymphocytes: Structural and functional analyses. Journal of Natural Products, 69(9), 1257-1260. https://doi.org/10.1021/np060033d
Xia, S., Zhai, Y., Wang, X., Fan, Q., & Han, T. (2021). Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. International Journal of Biological Macromolecules, 184, 946-954. https://doi.org/10.1016/j.ijbiomac.2021.06.149
Xiang, Y., Xu, X., & Li, J. (2012). Chemical properties and antioxidant activity of exopolysaccharides fractions from mycelial culture of Inonotus obliquus in a ground corn stover medium. Food Chemistry, 134(4), 1899-1905. https://doi.org/10.1016/j.foodchem.2012.03.121
Xie, L., Shen, M., Wang, Z., & Xie, J. (2021). Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends in Food Science & Technology, 118, 539-557. https://doi.org/10.1016/j.tifs.2021.09.016
Xu, J., Chen, D., Liu, C., Wu, X. Z., Dong, C. X., & Zhou, J. (2016). Structural characterization and anti-tumor effects of an inulin-type fructan from Atractylodes chinensis. International Journal of Biological Macromolecules, 82, 765-771. https://doi.org/10.1016/j.ijbiomac.2015.10.082
Xu, K. Y. (2005). Garlic oil extracted by countercurrent supercritical CO2 & garlic polysaccharide extraction from the raffinate (PhD dissertation). Northwest A&F University.
Xu, Y., Wu, Y. J., Sun, P. L., Zhang, F. M., Linhardt, R. J., & Zhang, A. Q. (2019). Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. International Journal of Biological Macromolecules, 132, 970-977. https://doi.org/10.1016/j.ijbiomac.2019.03.213
Xue, Z., Shi, G., Fang, Y., Liu, X., Zhou, X., Feng, S., & Zhao, L. (2019). Protective effect of polysaccharides from Radix Hedysari on gastric ulcers induced by acetic acid in rats. Food & Function, 10(7), 3965-3976. https://doi.org/10.1039/C9FO00433E
Yan, J. K., Wang, C., Yu, Y. B., Wu, L. X., Chen, T. T., & Wang, Z. W. (2021). Physicochemical characteristics and in vitro biological activities of polysaccharides derived from raw garlic (Allium sativum L.) bulbs via three-phase partitioning combined with gradient ethanol precipitation method. Food Chemistry, 339, 128081. https://doi.org/10.1016/j.foodchem.2020.128081
Yang, J., & Huang, X. S. (2009). Study on synthesis technology of octenylsuccinic garlic polysaccharide. Science and Technology of Food Industry, 30(8), 149-151. https://doi.org/10.1360/972009-754
Yang, W., & Huang, G. (2021). Extraction methods and activities of natural glucans. Trends in Food Science & Technology, 112, 50-57. https://doi.org/10.1016/j.tifs.2021.03.025
Yang, M., Wang, K., Gao, L., Han, Y. T., Lu, J. F., & Zou, T. T. (1992). Exploration for a natural selenium supplement-characterization and bioactivities of Se-containing polysaccharide from garlic. Journal of Chinese Pharmaceutical Sciences, 1, 28-32. https://doi.org/10.1992/01.004
Yang, N. (2007). Studies on extraction process and structural analysis of active constituents in fermented garlic (M.S. dissertation). Central South University.
Yang, N., Jin, Y., Jin, Z., & Xu, X. (2016). Electric-field-assisted extraction of garlic polysaccharides via experimental transformer device. Food and Bioprocess Technology, 9(9), 1612-1622. https://doi.org/10.1007/s11947-016-1742-x
Yang, W., Huang, G., Chen, F., & Huang, H. (2021). Extraction/synthesis and biological activities of selenopolysaccharide. Trends in Food Science & Technology, 109, 211-218. https://doi.org/10.1016/j.tifs.2021.01.028
Yang, Y., Qiu, Z., Li, L., Vidyarthi, S. K., Zheng, Z., & Zhang, R. (2021). Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: A comparison. Carbohydrate Polymers, 261, 117879. https://doi.org/10.1016/j.carbpol.2021.117879
Yang, Z., Hu, J., & Zhao, M. (2011). Isolation and quantitative determination of inulin-type oligosaccharides in roots of Morinda officinalis. Carbohydrate Polymers, 83(4), 1997-2004. https://doi.org/10.1016/j.carbpol.2010.11.006
Yen, C. H., Tseng, Y. H., Kuo, Y. W., Lee, M. C., & Chen, H. L. (2011). Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people-A placebo-controlled, diet-controlled trial. Nutrition, 27(4), 445-450. https://doi.org/10.1016/j.nut.2010.05.012
Young, I. D., Latousakis, D., & Juge, N. (2021). The immunomodulatory properties of β-2, 6 fructans: A comprehensive review. Nutrients, 13(4), 1309. https://doi.org/10.3390/nu13041309
Yu, H., & Chen, X. (2007). Carbohydrate post-glycosylational modifications. Organic & Biomolecular Chemistry, 5(6), 865-872. https://doi.org/10.1039/B700034K
Yu, W., Cha, W. L., Liang, H. M., Wu, J. L., & Liu, T. Y. (2008). Extraction and content determination of polysaccharide A from garlic by spectrophotometer. Shizhenguoyiguoyao, 9, 563-565. https://doi.org/10.3969/j.issn.1008-0805.2008.03.024
Yu, Y., Shen, M., Wang, Z., Wang, Y., Xie, M., & Xie, J. (2017). Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydrate Polymers, 174, 669-676. https://doi.org/10.1016/j.carbpol.2017.07.009
Zartl, B., Silberbauer, K., Loeppert, R., Viernstein, H., Praznik, W., & Mueller, M. (2018). Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics. Food & Function, 9(3), 1638-1646. https://doi.org/10.1039/C7FO01887H
Zeng, X. A., Zhou, K., Liu, D. M., Brennan, C. S., Brennan, M., Zhou, J. S., & Yu, S. J. (2016). Preparation of fructooligosaccharides using Aspergillus niger 6640 whole-cell as catalyst for bio-transformation. LWT-Food Science and Technology, 65, 1072-1079. https://doi.org/10.1016/j.lwt.2015.09.031
Zeng, Z. L., Liang, L. J., Ji, C., & Xu, D. (2009). Study on the optimization of extraction technology and antioxidation activity of garlic polysaccharide. Science and Technology of Food Industry, 30, 200-202. https://doi.org/10.1360/972009-754
Zhai, X., Ren, D., Luo, Y., Hu, Y., & Yang, X. (2017). Chemical characteristics of an Ilex Kuding tea polysaccharide and its protective effects against high fructose-induced liver injury and vascular endothelial dysfunction in mice. Food & Function, 8(7), 2536-2547. https://doi.org/10.1039/C7FO00490G
Zhang, B. B., Zhou, G., & Li, C. (2009). AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metabolism, 9(5), 407-416. https://doi.org/10.1016/j.cmet.2009.03.012
Zhang, H. L., Li, J., Li, G., Wang, D. M., Zhu, L. P., & Yang, D. P. (2009). Structural characterization and anti-fatigue activity of polysaccharides from the roots of Morinda officinalis. International Journal of Biological Macromolecules, 44(3), 257-261. https://doi.org/10.1016/j.ijbiomac.2008.12.010
Zhang, H. T., Zhu, L., Zhang, S., Zhan, X. B., & Lin, C. C. (2014). A new, quick, highly sensitive ultramicro-analysis method for the identification of fructose removed from fructofuranosyl-containing gluco-oligosaccharides by ESI-CID-MS/MS. Carbohydrate Research, 398, 1-7. https://doi.org/10.1016/j.carres.2014.08.013
Zhang, J., Meng, G., Zhai, G., Yang, Y., Zhao, H., & Jia, L. (2016). Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum. International Journal of Biological Macromolecules, 82, 432-439. https://doi.org/10.1016/j.ijbiomac.2015.10.016
Zhang, M., Du, W., & Bi, H. (2012). Physicochemical characterization of a low-molecular-weight fructooligosaccharide from Chinese Cangshan garlic (Allium sativum L.). Journal of Agricultural and Food Chemistry, 60(37), 9462-9467. https://doi.org/10.1021/jf301088x
Zhang, M., Qin, P. J., & Chen, Q. Q. (2009). Studies on extraction of polysaccharides in garlic and its molecular weight. Food and Fermentation Industries, 35, 160-163. https://doi.org/10.1007/978-3-540-85168-4_52
Zhang, N., Chen, H., Ma, L., & Zhang, Y. (2013). Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. International Journal of Biological Macromolecules, 54, 209-215. https://doi.org/10.1016/j.ijbiomac.2012.12.030
Zhang, N., Huang, X., Zeng, Y., Wu, X., & Peng, X. (2013). Study on prebiotic effectiveness of neutral garlic fructan in vitro. Food Science and Human Wellness, 2(3-4), 119-123. https://doi.org/10.1016/j.fshw.2013.07.001
Zhang, Q., & Marszalek, P. E. (2006). Solvent effects on the elasticity of polysaccharide molecules in disordered and ordered states by single-molecule force spectroscopy. Polymer, 47(7), 2526-2532. https://doi.org/10.1016/j.polymer.2005.12.088
Zhang, S., Waterhouse, G. I., Xu, F., He, Z., Du, Y., Lian, Y., Wu, P., & Sun-Waterhouse, D. (2021). Recent advances in utilization of pectins in biomedical applications: A review focusing on molecular structure-directing health-promoting properties. Critical Reviews in Food Science and Nutrition, , https://doi.org/10.1080/10408398.2021.1988897
Zhang, S., Zhang, Q., An, L., Zhang, J., Li, Z., Zhang, J., Li, Y., Tuerhong, M., Ohizumi, Y., Jin, J., Xu, J., & Guo, Y. (2020). A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects. Carbohydrate Polymers, 229, 115477. https://doi.org/10.1016/j.carbpol.2019.115477
Zhang, X., Li, Y., Cheng, J., Liu, G., Qi, C., Zhou, W., & Zhang, Y. (2014). Immune activities comparison of polysaccharide and polysaccharide-protein complex from Lycium barbarum L. International Journal of Biological Macromolecules, 65, 441-445. https://doi.org/10.1016/j.ijbiomac.2014.01.020
Zhang, X., Qi, C., Guo, Y., Zhou, W., & Zhang, Y. (2016). Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydrate Polymers, 149, 186-206. https://doi.org/10.1016/j.carbpol.2016.04.097
Zhang, Y., Kong, H., Fang, Y., Nishinari, K., & Phillips, G. O. (2013). Schizophyllan: A review on its structure, properties, bioactivities and recent developments. Bioactive Carbohydrates and Dietary Fibre, 1(1), 53-71. https://doi.org/10.1016/j.bcdf.2013.01.002
Zhang, Y., Li, S., Wang, X., Zhang, L., & Cheung, P. C. (2011). Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids, 25(2), 196-206. https://doi.org/10.1016/j.foodhyd.2010.02.001
Zhao, P., Zhou, H., Zhao, C., Li, X., Wang, Y., Huang, L., & Gao, W. (2019). Purification, characterization and immunomodulatory activity of fructans from Polygonatum odoratum and P. cyrtonema. Carbohydrate Polymers, 214, 44-52. https://doi.org/10.1016/j.carbpol.2019.03.014
Zhao, R., Cai, Y., Shao, X., & Ma, B. (2015). Improving the activity of Lycium barbarum polysaccharide on sub-health mice. Food & Function, 6(6), 2033-2040. https://doi.org/10.1039/c4fo01108b
Zhao, R., Cheng, N., Nakata, P. A., Zhao, L., & Hu, Q. (2019). Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Research International, 123, 383-392. https://doi.org/10.1016/j.foodres.2019.04.070
Zheng, Y., Wang, H., Guo, G. Q., Huang, X. S., & Shen, W. Z. (2008). Effect of garlic polysaccharide on cell proliferation and antioxidant activities in PC12 cells. Journal of Jinan University, 29, 110-114. https://doi.org/10.3969/j.issn.1000-9965.2008.02.002
Zhong, K., Liu, L., Tong, L., Zhong, X., Wang, Q., & Zhou, S. (2013). Rheological properties and antitumor activity of schizophyllan produced with solid-state fermentation. International Journal of Biological Macromolecules, 62, 13-17. https://doi.org/10.1016/j.ijbiomac.2013.08.015
Zhong, K., Tong, L., Liu, L., Zhou, X., Liu, X., Zhang, Q., & Zhou, S. (2015). Immunoregulatory and antitumor activity of schizophyllan under ultrasonic treatment. International Journal of Biological Macromolecules, 80, 302-308. https://doi.org/10.1016/j.ijbiomac.2015.06.052
Zhou, S., Huang, G., & Chen, G. (2021). Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chemistry, 361, 130089. https://doi.org/10.1016/j.foodchem.2021.130089
Zhu, Z. Y., Pang, W., Li, Y. Y., Ge, X. R., Chen, L. J., Liu, X. C., Lv, Q., Dong, G.-L., Liu, A.-J., & Zhang, Y. (2014). Effect of ultrasonic treatment on structure and antitumor activity of mycelial polysaccharides from Cordyceps gunnii. Carbohydrate Polymers, 114, 12-20. https://doi.org/10.1016/j.carbpol.2014.07.068
Zhu, Z., He, J., Liu, G., Barba, F. J., Koubaa, M., Ding, L., Bals, O., Grimi, N., & Vorobiev, E. (2016). Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innovative Food Science & Emerging Technologies, 33, 1-9. https://doi.org/10.1016/j.ifset.2015.12.023
Zou, M., Chen, Y., Sun-Waterhouse, D., Zhang, Y., & Li, F. (2018). Immunomodulatory acidic polysaccharides from Zizyphus jujuba cv. Huizao: Insights into their chemical characteristics and modes of action. Food Chemistry, 258, 35-42. https://doi.org/10.1016/j.foodchem.2018.03.052
Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., & Chen, W. Y. (2012). Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydrate Polymers, 89(2), 694-700. https://doi.10.1016/j.carbpol.2012.03.078

Auteurs

Zhichang Qiu (Z)

Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.

Yiteng Qiao (Y)

Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
School of Food Science and Technology, Jiangnan University, Wuxi, China.

Bin Zhang (B)

Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.

Dongxiao Sun-Waterhouse (D)

Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.

Zhenjia Zheng (Z)

Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH