Combining target analysis with sum parameters-a comprehensive approach to determine sediment contamination with PFAS and further fluorinated substances.


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 29 09 2021
accepted: 16 06 2022
pubmed: 1 7 2022
medline: 22 11 2022
entrez: 30 6 2022
Statut: ppublish

Résumé

Recent studies aiming at a fluorine mass balance analysis in sediments combined the determination of extractable organic fluorine (EOF) with target analysis. They reported high fractions of unidentified organic fluorine (UOF) compounds, as the target analysis covers only a limited number of per- and polyfluoroalkyl substances (PFAS). For this reason, in this study, a comprehensive approach was used combining target analysis with an extended PFAS spectrum, the EOF and a modified total oxidisable precursor (TOP) assay, which includes trifluoroacetic acid, to determine the PFAS contamination in sediments (n=41) and suspended solids (n=1) from water bodies in Northern Germany (Lower Saxony). PFAS are ubiquitous in the sediments (detected in 83% of the samples). Perfluorinated carboxylic acids (PFCAs) were found in 64% of the samples; perfluorinated sulfonic acids (PFSAs) were detected less frequently (21%), with the highest concentration observed for perfluorooctanesulfonic acid (PFOS). Levels of precursors and substitutes were lower. Applying the TOP assay resulted in an increase in PFCAs in 43% of the samples analysed. In most cases, target analysis and the TOP assay could not account for the EOF concentrations measured. However, as the fraction of UOF decreased significantly, the application of the TOP assay in fluorine mass balance analysis proved to be an important tool in characterising the PFAS contamination of riverine sediments.

Identifiants

pubmed: 35771320
doi: 10.1007/s11356-022-21588-x
pii: 10.1007/s11356-022-21588-x
doi:

Substances chimiques

Fluorocarbons 0
Fluorine 284SYP0193
Water Pollutants, Chemical 0
Alkanesulfonic Acids 0
Sulfonic Acids 0
Carboxylic Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

85802-85814

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Aro R, Carlsson P, Vogelsang C, Kärrman A, Yeung LW (2021) Fluorine mass balance analysis of selected environmental samples from Norway. Chemosphere 283:131200. https://doi.org/10.1016/j.chemosphere.2021.131200
doi: 10.1016/j.chemosphere.2021.131200
Benskin JP, Ikonomou MG, Gobas FAPC, Woudneh MB, Cosgrove JR (2012) Observation of a novel PFOS-precursor, the perfluorooctane sulfonamido ethanol-based phosphate (SAmPAP) diester, in marine sediments. Environ Sci Technol 46(12):6505–6514. https://doi.org/10.1021/es300823m
doi: 10.1021/es300823m
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541. https://doi.org/10.1002/ieam.258
doi: 10.1002/ieam.258
Casson R, Chiang S-YD (2018) Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs. Remediation 28(2):71–87. https://doi.org/10.1002/rem.21551
doi: 10.1002/rem.21551
Chen H, Reinhard M, Nguyen TV, You L, He Y, Gin KY-H (2017) Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment. Environ Pollut (Barking, Essex : 1987) 227:397–405. https://doi.org/10.1016/j.envpol.2017.04.091
doi: 10.1016/j.envpol.2017.04.091
Codling G, Vogt A, Jones PD, Wang T, Wang P, Lu Y-L, Corcoran M, Bonina S, Li A, Sturchio NC, Rockne KJ, Ji K, Khim J-S, Naile JE, Giesy JP (2014) Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. Chemosphere 114:203–209. https://doi.org/10.1016/j.chemosphere.2014.03.080
doi: 10.1016/j.chemosphere.2014.03.080
DIN 38414-14:2011-08, German Institute for Standardisation (DIN e.V.) (ed) (2011) German Standard Methods for the Examination of Water, Waste Water and Sludge - Sludge and Sediments (Group S) - Part 14: Determination of Selected Polyluorinated Compounds (PFC) in Sludge, Compost and Soil - Method Using High Performance Liquid Chromatography and Mass Spectrometric Detection (HPLC-MS/MS) (S 14). Beuth
German Federal Environmental Agency (2022) Environmental quality in Germany. https://thru.de/en/data/search/list-search-results/ . Accessed 08 Feb 2022
German Federal Parliament (2019) PFC contamination at Bundeswehr sites and properties. (in German):1–14
Göckener B, Fliedner A, Rüdel H, Fettig I, Koschorreck J (2021) Exploring unknown per- and polyfluoroalkyl substances in the German environment - the total oxidizable precursor assay as helpful tool in research and regulation. Sci Total Environ 782:146825. https://doi.org/10.1016/j.scitotenv.2021.146825
doi: 10.1016/j.scitotenv.2021.146825
Guo R, Megson D, Myers AL, Helm PA, Marvin C, Crozier P, Mabury S, Bhavsar SP, Tomy G, Simcik M, McCarry B, Reiner EJ (2016) Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments. Chemosphere 164:535–546. https://doi.org/10.1016/j.chemosphere.2016.08.126
doi: 10.1016/j.chemosphere.2016.08.126
Higgins CP, Luthy RG (2006) Sorption of perfluorinated surfactants on sediments. Environ Sci Technol 40(23):7251–7256. https://doi.org/10.1021/es061000n
doi: 10.1021/es061000n
Higgins CP, Field JA, Criddle CS, Luthy RG (2005) Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol 39(11):3946–3956. https://doi.org/10.1021/es048245p
doi: 10.1021/es048245p
Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DCG (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40(11):3463–3473. https://doi.org/10.1021/es052580b
doi: 10.1021/es052580b
Houtz EF, Sedlak DL (2012) Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ Sci Technol 46(17):9342–9349. https://doi.org/10.1021/es302274g
doi: 10.1021/es302274g
Janda J (2019) Polar perfluoroalkylcarboxylic acids. Determination in aquatic samples and studies on their precursors in water and solids. (in German), 1st edn. Springer Spektrum, Wiesbaden
Janda J, Nödler K, Scheurer M, Happel O, Nürenberg G, Zwiener C, Lange FT (2019) Closing the gap - inclusion of ultrashort-chain perfluoroalkyl carboxylic acids in the total oxidizable precursor (TOP) assay protocol. Environ Sci Process Impacts 21(11):1926–1935. https://doi.org/10.1039/c9em00169g
doi: 10.1039/c9em00169g
Jeschke P (2017) Latest generation of halogen-containing pesticides. Pest Manag Sci 73(6):1053–1066. https://doi.org/10.1002/ps.4540
doi: 10.1002/ps.4540
Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31(9):2445–2454
doi: 10.1021/es961007c
Labadie P, Chevreuil M (2011) Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France). Environ Pollut (Barking, Essex : 1987) 159(2):391–397. https://doi.org/10.1016/j.envpol.2010.10.039
doi: 10.1016/j.envpol.2010.10.039
Langberg HA, Breedveld GD, Slinde GA, Grønning HM, Høisæter A, Jartun M, Rundberget T, Jenssen BM, Hale SE (2020) Fluorinated precursor compounds in sediments as a source of perfluorinated alkyl acids (PFAA) to biota. Environ Sci Technol 54:13077–13089. https://doi.org/10.1021/acs.est.0c04587
doi: 10.1021/acs.est.0c04587
Lee H and Mabury SA (2014) Global distribution of polyfuoroalkyl and perfuoroalkyl substances and their transformation products in environmental solids. Transformation Products of Emerging Contaminants in the Environment: Analysis, Processes, Occurence, Effects and Risks(ed. D. A. Lambropoulou and L. M. L. Nollet, Wiley, 2014):797–826
Lee H, Tevlin AG, Mabury SA, Mabury SA (2014) Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: biodegradation and plant uptake in greenhouse and field experiments. Environ Sci Technol 48(1):340–349. https://doi.org/10.1021/es403949z
doi: 10.1021/es403949z
Lee Y-M, Lee J-Y, Kim M-K, Yang H, Lee J-E, Son Y, Kho Y, Choi K, Zoh K-D (2020) Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J Hazard Mater 381:120909. https://doi.org/10.1016/j.jhazmat.2019.120909
doi: 10.1016/j.jhazmat.2019.120909
Lower Saxony State Office for Consumer Protection and Food Safety (2019) Perfluorinated alkyl substances (PFAS) in river fish. (in German). https://www.laves.niedersachsen.de/startseite/lebensmittel/lebensmittelgruppen/fisch_fischerzeugnisse/perfluorierte-alkylsubstanzen-in-flussfischen-179059.html#:~:text=Das%20nieders%C3%A4chsische%20Verbraucherschutzministerium%20empfiehlt%3A%20Fische%20aus%20der%20Ochtum%20nicht%20verzehren&text=Perfluorierte%20Alkylsubstanzen%20(PFAS)%20Verbindungen%20gelten,sie%20im%20menschlichen%20K%C3%B6rper%20angereichert . Accessed 25 Feb 2022
LUFA Speyer (2020), Information about the standard soil. https://www.lufa-speyer.de/index.php/dienstleistungen/standardboeden/8-dienstleistungen/artikel/57-standard-soils . Accessed 04 Feb 2022
Martin JW, Kannan K, Berger U, Voogt P de, Field J, Franklin J, Giesy JP, Harner T, Muir DCG, Scott B, Kaiser M, Järnberg U, Jones KC, Mabury SA, Schroeder H, Simcik M, Sottani C, van Bavel B, Kärrman A, Lindström G, van Leeuwen S (2004) Analytical challenges hamper perfluoroalkyl research. Environ Sci Technol 38(13):248A-255A. https://doi.org/10.1021/es0405528
Miyake Y, Yamashita N, So MK, Rostkowski P, Taniyasu S, Lam PKS, Kannan K (2007) Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine: a mass balance approach for the determination of known and unknown organofluorine compounds. J Chromatogr A 1154(1-2):214–221. https://doi.org/10.1016/j.chroma.2007.03.084
doi: 10.1016/j.chroma.2007.03.084
NLWKN (2022) , Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency. https://www.gewaessergueteonline.nlwkn.niedersachsen.de/Karte . Accessed 05 Feb 2022
Nödler K, Freeling F, Sandholzer A, Schaffer M, Schmid R, Scheurer M (2019) Investigations on the "occurrence and formation potential of trifluoroacetate (TFA) in surface waters of Lower Saxony". (in German):1–19
OECD (2018) Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of per- and polyfluoroalkyl substances (PFASs)
Papenmeier S, Schrottke K, Bartholomä A, Flemming BW (2013) Sedimentological and rheological properties of the water–solid bed interface in the Weser and Ems Estuaries, North Sea, Germany: implications for fluid mud Classification. J Coast Res 289:797–808. https://doi.org/10.2112/JCOASTRES-D-11-00144.1
doi: 10.2112/JCOASTRES-D-11-00144.1
Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44. https://doi.org/10.1021/es0512475
doi: 10.1021/es0512475
Sacher F, Lange FT, Nödler K, Scheurer M, Müller J., Nürenberg G, J. Janda, F. Freeling, M. Muschket, N. Keltsch, H. Paschke, T. Reemtsma, U. Berger, M. Schlummer, C. Zwiener, S. Tisler, B. Bugsel, J. Breuer, M. Mechler, D. Beiser, H.-R. Köhler, S. Wilhelm, C. Lorenz (2019) Optimization of the EOF analysis taking into account the contributions of different substance classes of poly- and perfluorinated compounds. (in German):123–127
Scheurer M, Nödler K, Freeling F, Janda J, Happel O, Riegel M, Müller U, Storck FR, Fleig M, Lange FT, Brunsch A, Brauch H-J (2017) Small, mobile, persistent: trifluoroacetate in the water cycle - Overlooked sources, pathways, and consequences for drinking water supply. Water Res 126:460–471. https://doi.org/10.1016/j.watres.2017.09.045
doi: 10.1016/j.watres.2017.09.045
Simonnet-Laprade C, Budzinski H, Maciejewski K, Le Menach K, Santos R, Alliot F, Goutte A, Labadie P (2019) Biomagnification of perfluoroalkyl acids (PFAAs) in the food web of an urban river: assessment of the trophic transfer of targeted and unknown precursors and implications. Environ Sci Process Impacts 21(11):1864–1874. https://doi.org/10.1039/c9em00322c
doi: 10.1039/c9em00322c
Sliwinski K, Ronnenberg K, Jung K, Strauß E, Siebert U (2019) Habitat requirements of the European brown hare (Lepus europaeus PALLAS 1778) in an intensively used agriculture region (Lower Saxony, Germany). BMC ecology:19–31. https://doi.org/10.1186/s12898-019-0247-7
Solomon KR, Velders GJM, Wilson SR, Madronich S, Longstreth J, Aucamp PJ, Bornman JF (2016) Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. J Toxicol Environ Health Part B, Critical Rev 19(7):289–304. https://doi.org/10.1080/10937404.2016.1175981
doi: 10.1080/10937404.2016.1175981
Tetzlaff B, Ta P (2018) Pollution of running waters in Lower Saxony with human pharmaceuticals (Phase II). (in German):125–170
U.S. Environmental Protection Agency (2020) METHOD 537.1 Revision 2.0. Determination of selected per- and polyfluorinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)
U.S. Environmental Protection Agency (2021) PFAS Master List. https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster . Accessed 04 Feb 2022
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev 114(4):2432–2506. https://doi.org/10.1021/cr4002879
doi: 10.1021/cr4002879
White ND, Balthis L, Kannan K, Silva AO de, Wu Q, French KM, Daugomah J, Spencer C, Fair PA (2015) Elevated levels of perfluoroalkyl substances in estuarine sediments of Charleston, SC. Sci Total Environ 521-522:79–89. doi: https://doi.org/10.1016/j.scitotenv.2015.03.078
Willach S, Brauch H-J, Lange FT (2016) Contribution of selected perfluoroalkyl and polyfluoroalkyl substances to the adsorbable organically bound fluorine in German rivers and in a highly contaminated groundwater. Chemosphere 145:342–350. https://doi.org/10.1016/j.chemosphere.2015.11.113
doi: 10.1016/j.chemosphere.2015.11.113
Yeung LWY, Miyake Y, Wang Y, Taniyasu S, Yamashita N, Lam PKS (2009) Total fluorine, extractable organic fluorine, perfluorooctane sulfonate and other related fluorochemicals in liver of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from South China. Environ Pollut (Barking, Essex : 1987) 157(1):17–23. https://doi.org/10.1016/j.envpol.2008.08.005
doi: 10.1016/j.envpol.2008.08.005
Yeung LWY, de Silva AO, Loi EIH, Marvin CH, Taniyasu S, Yamashita N, Mabury SA, Muir DCG, Lam PKS (2013) Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario. Environ Int 59:389–397. https://doi.org/10.1016/j.envint.2013.06.026
doi: 10.1016/j.envint.2013.06.026
Zhang C, Hopkins ZR, McCord J, Strynar MJ, Knappe DRU (2019) Fate of per- and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water. Environ Sci Technol Lett 6(11):662–668. https://doi.org/10.1021/acs.estlett.9b00525
doi: 10.1021/acs.estlett.9b00525
Zheng B, Liu X, Guo R, Fu Q, Zhao X, Wang S, Chang S, Wang X, Geng M, Yang G (2017) Distribution characteristics of poly- and perfluoroalkyl substances in the Yangtze River Delta. J Environ Sci (China) 61:97–109. https://doi.org/10.1016/j.jes.2017.09.015
doi: 10.1016/j.jes.2017.09.015

Auteurs

Marc Guckert (M)

TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany.

Marco Scheurer (M)

TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany.

Mario Schaffer (M)

Lower Saxony Water Management, Coastal Defense and Nature Conservation Agency - NLWKN, Hannover-Hildesheim, Germany.

Thorsten Reemtsma (T)

Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.

Karsten Nödler (K)

TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany. karsten.noedler@tzw.de.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH