What's Old is New: The Past, Present and Future Role of Thalidomide in the Modern-Day Management of Multiple Myeloma.


Journal

Targeted oncology
ISSN: 1776-260X
Titre abrégé: Target Oncol
Pays: France
ID NLM: 101270595

Informations de publication

Date de publication:
07 2022
Historique:
accepted: 06 06 2022
pubmed: 1 7 2022
medline: 5 8 2022
entrez: 30 6 2022
Statut: ppublish

Résumé

Immunomodulatory drugs (IMiDs) have become an integral part of therapy for both newly diagnosed and relapsed/refractory multiple myeloma (RRMM). IMiDs bind to cereblon, leading to the degradation of proteins involved in B-cell survival and proliferation. Thalidomide, a first-generation IMiD, has little to no myelosuppressive potential, negligible renal clearance, and long-proven anti-myeloma activity. However, thalidomide's adverse effects (e.g., somnolence, constipation, and peripheral neuropathy) and the advent of more potent therapeutic options has led to the drug being less frequently used in many countries, including the US and Canada. Newer-generation IMiDs, such as lenalidomide and pomalidomide, are utilized far more frequently. In numerous previous trials, salvage therapy with thalidomide (50-200 mg/day) plus corticosteroids (with or without selected cytotoxic or targeted agents) has been shown to be effective and well-tolerated in the RRMM setting. Hence, thalidomide-based regimens remain important alternatives for heavily pretreated patients, especially for those who have no access to novel therapies and/or are not eligible for their use (due to renal failure, high-grade myelosuppression, or significant comorbidities). Ongoing and future trials may provide further insights into the current role of thalidomide, especially by comparing thalidomide-containing regimens with protocols based on newer-generation IMiDs and by investigating thalidomide's association with novel therapies (e.g., antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells).

Identifiants

pubmed: 35771402
doi: 10.1007/s11523-022-00897-8
pii: 10.1007/s11523-022-00897-8
doi:

Substances chimiques

Antineoplastic Agents 0
Immunologic Factors 0
Thalidomide 4Z8R6ORS6L
Lenalidomide F0P408N6V4

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

383-405

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397(10272):410–27. https://doi.org/10.1016/S0140-6736(21)00135-5 .
doi: 10.1016/S0140-6736(21)00135-5 pubmed: 33516340
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. https://doi.org/10.1056/NEJMra1011442 .
doi: 10.1056/NEJMra1011442 pubmed: 21410373
Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48. https://doi.org/10.1016/S1470-2045(14)70442-5 .
doi: 10.1016/S1470-2045(14)70442-5 pubmed: 25439696
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 .
doi: 10.3322/caac.21660 pubmed: 33538338
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327(5):464–77. https://doi.org/10.1001/jama.2022.0003 .
doi: 10.1001/jama.2022.0003 pubmed: 35103762
Therneau TM, Kyle RA, Melton LJ 3rd, Larson DR, Benson JT, Colby CL, et al. Incidence of monoclonal gammopathy of undetermined significance and estimation of duration before first clinical recognition. Mayo Clin Proc. 2012;87(11):1071–9. https://doi.org/10.1016/j.mayocp.2012.06.014 .
doi: 10.1016/j.mayocp.2012.06.014 pubmed: 22883742 pmcid: 3541934
Solly S. Remarks on the pathology of mollities ossium; with cases. Med Chir Trans. 1844;27:435–98. https://doi.org/10.1177/095952874402700129 .
doi: 10.1177/095952874402700129 pubmed: 20895811 pmcid: 2116942
Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–16. https://doi.org/10.1056/NEJMoa2024850 .
doi: 10.1056/NEJMoa2024850 pubmed: 33626253
Morgan GJ, Boyle EM, Davies FE. From bench to bedside: the evolution of genomics and its implications for the current and future management of multiple myeloma. Cancer J. 2021;27(3):213–21. https://doi.org/10.1097/PPO.0000000000000523 .
doi: 10.1097/PPO.0000000000000523 pubmed: 34549910
Mateos MV, Ludwig H, Bazarbachi A, Beksac M, Bladé J, Boccadoro M, et al. Insights on multiple myeloma treatment strategies. Hemasphere. 2018;3(1): e163. https://doi.org/10.1097/HS9.0000000000000163 .
doi: 10.1097/HS9.0000000000000163 pubmed: 31723802 pmcid: 6745941
Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67. https://doi.org/10.1002/ajh.25791 .
doi: 10.1002/ajh.25791 pubmed: 32212178
Schavgoulidze A, Cazaubiel T, Perrot A, Avet-Loiseau H, Corre J. Multiple myeloma: heterogeneous in every way. Cancers (Basel). 2021;13(6):1285. https://doi.org/10.3390/cancers13061285 .
doi: 10.3390/cancers13061285 pubmed: 33805803 pmcid: 7998947
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping myeloma in check: the past, present and future of immunotherapy in multiple myeloma. Cancers (Basel). 2021;13(19):4787. https://doi.org/10.3390/cancers13194787 .
doi: 10.3390/cancers13194787 pubmed: 34638271 pmcid: 8507631
Ludwig H. Myeloma research on the move. Blood Cancer J. 2021;11(9):155. https://doi.org/10.1038/s41408-021-00550-z .
doi: 10.1038/s41408-021-00550-z pubmed: 34535632 pmcid: 8448885
Theodoropoulos N, Lancman G, Chari A. Targeting nuclear export proteins in multiple myeloma therapy. Target Oncol. 2020;15(6):697–708. https://doi.org/10.1007/s11523-020-00758-2 .
doi: 10.1007/s11523-020-00758-2 pubmed: 33074469 pmcid: 7570401
Sanchez L, Dardac A, Madduri D, Richard S, Richter J. B-cell maturation antigen (BCMA) in multiple myeloma: the new frontier of targeted therapies. Ther Adv Hematol. 2021;12:2040620721989585. https://doi.org/10.1177/2040620721989585 .
doi: 10.1177/2040620721989585 pubmed: 33796236 pmcid: 7970693
Legarda MA, Cejalvo MJ, de la Rubia J. Recent advances in the treatment of patients with multiple myeloma. Cancers (Basel). 2020;12(12):3576. https://doi.org/10.3390/cancers12123576 .
doi: 10.3390/cancers12123576 pmcid: 7761116
National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program. SEER cancer statistics review 1973–1994. 1997. Available at: https://seer.cancer.gov/archive/csr/1973_1994/myeloma.pdf . Accessed 6 Feb 2022.
National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program. Cancer stat facts: myeloma. 2021. Available at: https://seer.cancer.gov/statfacts/html/mulmy.html . Accessed 6 Feb 2022.
Luo J, Gagne JJ, Landon J, Avorn J, Kesselheim AS. Comparative effectiveness and safety of thalidomide and lenalidomide in patients with multiple myeloma in the United States of America: a population-based cohort study. Eur J Cancer. 2017;70:22–33. https://doi.org/10.1016/j.ejca.2016.10.018 .
doi: 10.1016/j.ejca.2016.10.018 pubmed: 27866096
Dimopoulos MA, Moreau P, Terpos E, Mateos MV, Zweegman S, Cook G, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32(3):309–22. https://doi.org/10.1016/j.annonc.2020.11.014 .
doi: 10.1016/j.annonc.2020.11.014 pubmed: 33549387
Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K, Benboubker L, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet. 2019;394(10192):29–38. https://doi.org/10.1016/S0140-6736(19)31240-1 .
doi: 10.1016/S0140-6736(19)31240-1 pubmed: 31171419
National Comprehensive Cancer Network (NCCN). NCCN guidelines: multiple myeloma, version 5.2022. Available at: https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf . 2022. Accessed 15 Mar 2022.
Thakurta A, Pierceall WE, Amatangelo MD, Flynt E, Agarwal A. Developing next generation immunomodulatory drugs and their combinations in multiple myeloma. Oncotarget. 2021;12(15):1555–63. https://doi.org/10.18632/oncotarget.27973 .
doi: 10.18632/oncotarget.27973 pubmed: 34316334 pmcid: 8310669
Harousseau JL. Thalidomide in multiple myeloma: past, present and future. Future Oncol. 2006;2(5):577–89. https://doi.org/10.2217/14796694.2.5.577 .
doi: 10.2217/14796694.2.5.577 pubmed: 17026450
Tseng S, Pak G, Washenik K, Pomeranz MK, Shupack JL. Rediscovering thalidomide: a review of its mechanism of action, side effects, and potential uses. J Am Acad Dermatol. 1996;35(6):969–79. https://doi.org/10.1016/s0190-9622(96)90122-x .
doi: 10.1016/s0190-9622(96)90122-x pubmed: 8959957
Ribatti D, Vacca A. Therapeutic renaissance of thalidomide in the treatment of haematological malignancies. Leukemia. 2005;19(9):1525–31. https://doi.org/10.1038/sj.leu.2403852 .
doi: 10.1038/sj.leu.2403852 pubmed: 15973447
Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4(4):314–22. https://doi.org/10.1038/nrc1323 .
doi: 10.1038/nrc1323 pubmed: 15057291
Brent RL. Drug testing in animals for teratogenic effects. Thalidomide in the pregnant rat. J Pediatr. 1964;64:762–70. https://doi.org/10.1016/s0022-3476(64)80626-0 .
doi: 10.1016/s0022-3476(64)80626-0 pubmed: 14149012
Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol. 2011;2(5):291–308. https://doi.org/10.1177/2040620711413165 .
doi: 10.1177/2040620711413165 pubmed: 23556097 pmcid: 3573415
Ances BM. New concerns about thalidomide. Obstet Gynecol. 2002;99(1):125–8. https://doi.org/10.1016/s0029-7844(01)01662-3 .
doi: 10.1016/s0029-7844(01)01662-3 pubmed: 11777522
Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today. 2015;105(2):140–56. https://doi.org/10.1002/bdrc.21096 .
doi: 10.1002/bdrc.21096 pubmed: 26043938 pmcid: 4737249
Olson KB, Hall TC, Horton J, Khung CL, Hosley HF. Thalidomide (N-phthaloylglutamimide) in the treatment of advanced cancer. Clin Pharmacol Ther. 1965;6:292–7. https://doi.org/10.1002/cpt196563292 .
doi: 10.1002/cpt196563292 pubmed: 14296025
Grabstald H, Golbey R. Clinical experiences with thalidomide in patients with cancer. Clin Pharmacol Ther. 1965;6:298–302. https://doi.org/10.1002/cpt196563298 .
doi: 10.1002/cpt196563298 pubmed: 14296026
Sheskin J. Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther. 1965;6:303–6. https://doi.org/10.1002/cpt196563303 .
doi: 10.1002/cpt196563303 pubmed: 14296027
Jacobson JM. Thalidomide: a remarkable comeback. Expert Opin Pharmacother. 2000;1(4):849–63. https://doi.org/10.1517/14656566.1.4.849 .
doi: 10.1517/14656566.1.4.849 pubmed: 11249521
Iyer CG, Languillon J, Ramanujam K, Tarabini-Castellani G, De las Aguas JT, Bechelli LM, et al. WHO co-ordinated short-term double-blind trial with thalidomide in the treatment of acute lepra reactions in male lepromatous patients. Bull World Health Organ. 1971;45(6):719–32.
pubmed: 4947831 pmcid: 2427977
Lenardo TM, Calabrese LH. The role of thalidomide in the treatment of rheumatic disease. J Clin Rheumatol. 2000;6(1):19–26. https://doi.org/10.1097/00124743-200002000-00003 .
doi: 10.1097/00124743-200002000-00003 pubmed: 19078444
Wines NY, Cooper AJ, Wines MP. Thalidomide in dermatology. Australas J Dermatol. 2002;43(4):229–40. https://doi.org/10.1046/j.1440-0960.2002.00608.x .
doi: 10.1046/j.1440-0960.2002.00608.x pubmed: 12423428
Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci. 2011;122(1):1–6. https://doi.org/10.1093/toxsci/kfr088 .
doi: 10.1093/toxsci/kfr088 pubmed: 21507989
Matthews SJ, McCoy C. Thalidomide: a review of approved and investigational uses. Clin Ther. 2003;25(2):342–95. https://doi.org/10.1016/s0149-2918(03)80085-1 .
doi: 10.1016/s0149-2918(03)80085-1 pubmed: 12749503
Calabrese L, Resztak K. Thalidomide revisited: pharmacology and clinical applications. Expert Opin Investig Drugs. 1998;7(12):2043–60. https://doi.org/10.1517/13543784.7.12.2043 .
doi: 10.1517/13543784.7.12.2043 pubmed: 15991946
D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91(9):4082–5. https://doi.org/10.1073/pnas.91.9.4082 .
doi: 10.1073/pnas.91.9.4082 pubmed: 7513432 pmcid: 43727
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31. https://doi.org/10.1038/nm0195-27 .
doi: 10.1038/nm0195-27 pubmed: 7584949
Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol. 1994;87(3):503–8. https://doi.org/10.1111/j.1365-2141.1994.tb08304.x .
doi: 10.1111/j.1365-2141.1994.tb08304.x pubmed: 7527645
Vacca A, Ribatti D, Roncali L, Dammacco F. Angiogenesis in B cell lymphoproliferative diseases. Biological and clinical studies. Leuk Lymphoma. 1995;20(1–2):27–38. https://doi.org/10.3109/10428199509054750 .
doi: 10.3109/10428199509054750 pubmed: 8750620
Amare GG, Meharie BG, Belayneh YM. A drug repositioning success: the repositioned therapeutic applications and mechanisms of action of thalidomide. J Oncol Pharm Pract. 2021;27(3):673–8. https://doi.org/10.1177/1078155220975825 .
doi: 10.1177/1078155220975825 pubmed: 33249990
Palumbo A, Palladino C. Venous and arterial thrombotic risks with thalidomide: evidence and practical guidance. Ther Adv Drug Saf. 2012;3(5):255–66. https://doi.org/10.1177/2042098612452291 .
doi: 10.1177/2042098612452291 pubmed: 25083240 pmcid: 4110867
Kazandjian D, Landgren O. A look backward and forward in the regulatory and treatment history of multiple myeloma: approval of novel-novel agents, new drug development, and longer patient survival. Semin Oncol. 2016;43(6):682–9. https://doi.org/10.1053/j.seminoncol.2016.10.008 .
doi: 10.1053/j.seminoncol.2016.10.008 pubmed: 28061986 pmcid: 5282737
Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263(1):160–72. https://doi.org/10.1111/imr.12233 .
doi: 10.1111/imr.12233 pubmed: 25510276
Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8(7):2210–6.
pubmed: 12114422
Rajkumar SV, Witzig TE. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat Rev. 2000;26(5):351–62. https://doi.org/10.1053/ctrv.2000.0188 .
doi: 10.1053/ctrv.2000.0188 pubmed: 11006136
Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C, et al. Angiogenesis in multiple myeloma. Eur J Cancer. 2006;42(11):1581–90. https://doi.org/10.1016/j.ejca.2006.02.017 .
doi: 10.1016/j.ejca.2006.02.017 pubmed: 16797965
Moser-Katz T, Joseph NS, Dhodapkar MV, Lee KP, Boise LH. Game of bones: how myeloma manipulates its microenvironment. Front Oncol. 2021;10: 625199. https://doi.org/10.3389/fonc.2020.625199 .
doi: 10.3389/fonc.2020.625199 pubmed: 33634031 pmcid: 7900622
Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood. 2005;105(4):1383–95. https://doi.org/10.1182/blood-2004-07-2909 .
doi: 10.1182/blood-2004-07-2909 pubmed: 15471951
Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111–6.
pubmed: 10955791
Sezer O, Niemöller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol. 2000;79(10):574–7. https://doi.org/10.1007/s002770000236 .
doi: 10.1007/s002770000236 pubmed: 11100749
Lee N, Lee H, Moon SY, Sohn JY, Hwang SM, Yoon OJ, et al. Adverse prognostic impact of bone marrow microvessel density in multiple myeloma. Ann Lab Med. 2015;35(6):563–9. https://doi.org/10.3343/alm.2015.35.6.563 .
doi: 10.3343/alm.2015.35.6.563 pubmed: 26354343 pmcid: 4579099
Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R, et al. Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant. 2004;34(3):235–9. https://doi.org/10.1038/sj.bmt.1704555 .
doi: 10.1038/sj.bmt.1704555 pubmed: 15170170
Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L, et al. Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood. 2003;101(5):1715–7. https://doi.org/10.1182/blood-2002-08-2441 .
doi: 10.1182/blood-2002-08-2441 pubmed: 12393501
Kenyon BM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res. 1997;64(6):971–8. https://doi.org/10.1006/exer.1997.0292 .
doi: 10.1006/exer.1997.0292 pubmed: 9301478
Tamilarasan KP, Kolluru GK, Rajaram M, Indhumathy M, Saranya R, Chatterjee S. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell Biol. 2006;7:17. https://doi.org/10.1186/1471-2121-7-17 .
doi: 10.1186/1471-2121-7-17 pubmed: 16584574 pmcid: 1456963
Majumder S, Rajaram M, Muley A, Reddy HS, Tamilarasan KP, Kolluru GK, et al. Thalidomide attenuates nitric oxide-driven angiogenesis by interacting with soluble guanylyl cyclase. Br J Pharmacol. 2009;158(7):1720–34. https://doi.org/10.1111/j.1476-5381.2009.00446.x .
doi: 10.1111/j.1476-5381.2009.00446.x pubmed: 19912234 pmcid: 2801213
Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol. 2005;23(23):5334–46. https://doi.org/10.1200/JCO.2005.03.723 .
doi: 10.1200/JCO.2005.03.723 pubmed: 15939924
Ria R, Melaccio A, Racanelli V, Vacca A. Anti-VEGF drugs in the treatment of multiple myeloma patients. J Clin Med. 2020;9(6):1765. https://doi.org/10.3390/jcm9061765 .
doi: 10.3390/jcm9061765 pmcid: 7355441
Ribatti D, Vacca A. New insights in anti-angiogenesis in multiple myeloma. Int J Mol Sci. 2018;19(7):2031. https://doi.org/10.3390/ijms19072031 .
doi: 10.3390/ijms19072031 pmcid: 6073492
Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R, et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia. 2004;18(3):624–7. https://doi.org/10.1038/sj.leu.2403285 .
doi: 10.1038/sj.leu.2403285 pubmed: 14749707
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002;99(12):4525–30. https://doi.org/10.1182/blood.v99.12.4525 .
doi: 10.1182/blood.v99.12.4525 pubmed: 12036884
Al-Hujaily EM, Oldham RA, Hari P, Medin JA. Development of novel immunotherapies for multiple myeloma. Int J Mol Sci. 2016;17(9):1506. https://doi.org/10.3390/ijms17091506 .
doi: 10.3390/ijms17091506 pmcid: 5037783
Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24(1):22–32. https://doi.org/10.1038/leu.2009.236 .
doi: 10.1038/leu.2009.236 pubmed: 19907437
D’Souza C, Prince HM, Neeson PJ. Understanding the role of T-cells in the antimyeloma effect of immunomodulatory drugs. Front Immunol. 2021;12: 632399. https://doi.org/10.3389/fimmu.2021.632399 .
doi: 10.3389/fimmu.2021.632399 pubmed: 33746969 pmcid: 7973099
Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187(11):1885–92. https://doi.org/10.1084/jem.187.11.1885 .
doi: 10.1084/jem.187.11.1885 pubmed: 9607928 pmcid: 2212313
LeBlanc R, Hideshima T, Catley LP, Shringarpure R, Burger R, Mitsiades N, et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood. 2004;103(5):1787–90. https://doi.org/10.1182/blood-2003-02-0361 .
doi: 10.1182/blood-2003-02-0361 pubmed: 14512311
Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6. https://doi.org/10.1182/blood.v98.1.210 .
doi: 10.1182/blood.v98.1.210 pubmed: 11418482
Fritz E, Ludwig H. Interferon-alpha treatment in multiple myeloma: meta-analysis of 30 randomised trials among 3948 patients. Ann Oncol. 2000;11(11):1427–36. https://doi.org/10.1023/a:1026548226770 .
doi: 10.1023/a:1026548226770 pubmed: 11142483
Ito T, Handa H. Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs. Int J Hematol. 2016;104(3):293–9. https://doi.org/10.1007/s12185-016-2073-4 .
doi: 10.1007/s12185-016-2073-4 pubmed: 27460676
Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–50. https://doi.org/10.1126/science.1177319 .
doi: 10.1126/science.1177319 pubmed: 20223979
Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118(18):4771–9. https://doi.org/10.1182/blood-2011-05-356063 .
doi: 10.1182/blood-2011-05-356063 pubmed: 21860026 pmcid: 3208291
Sato T, Ito T, Handa H. Cereblon-based small-molecule compounds to control neural stem cell proliferation in regenerative medicine. Front Cell Dev Biol. 2021;9: 629326. https://doi.org/10.3389/fcell.2021.629326 .
doi: 10.3389/fcell.2021.629326 pubmed: 33777938 pmcid: 7990905
Kowalski TW, Gomes JDA, Garcia GBC, Fraga LR, Paixao-Cortes VR, Recamonde-Mendoza M, et al. CRL4-cereblon complex in thalidomide embryopathy: a translational investigation. Sci Rep. 2020;10(1):851. https://doi.org/10.1038/s41598-020-57512-x .
doi: 10.1038/s41598-020-57512-x pubmed: 31964914 pmcid: 6972723
Shi Q, Chen L. Cereblon: a protein crucial to the multiple functions of immunomodulatory drugs as well as cell metabolism and disease generation. J Immunol Res. 2017;2017:9130608. https://doi.org/10.1155/2017/9130608 .
doi: 10.1155/2017/9130608 pubmed: 28894755 pmcid: 5574216
Asatsuma-Okumura T, Ito T, Handa H. Molecular mechanisms of the teratogenic effects of thalidomide. Pharmaceuticals (Basel). 2020;13(5):95. https://doi.org/10.3390/ph13050095 .
doi: 10.3390/ph13050095
Gao S, Wang S, Fan R, Hu J. Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomed Pharmacother. 2020;127: 110114. https://doi.org/10.1016/j.biopha.2020.110114 .
doi: 10.1016/j.biopha.2020.110114 pubmed: 32304852
Stewart AK. Medicine. How thalidomide works against cancer. Science. 2014;343(6168):256–7. https://doi.org/10.1126/science.1249543 .
doi: 10.1126/science.1249543 pubmed: 24436409 pmcid: 4084783
Nooka AK, Lonial S. Mechanism of action and novel IMiD-based compounds and combinations in multiple myeloma. Cancer J. 2019;25(1):19–31. https://doi.org/10.1097/PPO.0000000000000354 .
doi: 10.1097/PPO.0000000000000354 pubmed: 30694856
Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;523(7559):183–8. https://doi.org/10.1038/nature14610 .
doi: 10.1038/nature14610 pubmed: 26131937 pmcid: 4853910
Yamamoto J, Suwa T, Murase Y, Tateno S, Mizutome H, Asatsuma-Okumura T, et al. ARID2 is a pomalidomide-dependent CRL4CRBN substrate in multiple myeloma cells. Nat Chem Biol. 2020;16(11):1208–17. https://doi.org/10.1038/s41589-020-0645-3 .
doi: 10.1038/s41589-020-0645-3 pubmed: 32958952
Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962–72. https://doi.org/10.1182/blood-2007-10-078022 .
doi: 10.1182/blood-2007-10-078022 pubmed: 18332230 pmcid: 2265446
Ribatti D. A historical perspective on milestones in multiple myeloma research. Eur J Haematol. 2018;100(3):221–8. https://doi.org/10.1111/ejh.13003 .
doi: 10.1111/ejh.13003 pubmed: 29194778
Kyle RA. Five decades of therapy for multiple myeloma: a paradigm for therapeutic models. Leukemia. 2005;19(6):910–2. https://doi.org/10.1038/sj.leu.2403728 .
doi: 10.1038/sj.leu.2403728 pubmed: 15800669
McElwain TJ, Powles RL. High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet. 1983;2(8354):822–4. https://doi.org/10.1016/s0140-6736(83)90739-0 .
doi: 10.1016/s0140-6736(83)90739-0 pubmed: 6137651
Barlogie B, Hall R, Zander A, Dicke K, Alexanian R. High-dose melphalan with autologous bone marrow transplantation for multiple myeloma. Blood. 1986;67(5):1298–301.
doi: 10.1182/blood.V67.5.1298.1298
Barlogie B, Alexanian R, Dicke KA, Zagars G, Spitzer G, Jagannath S, et al. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood. 1987;70(3):869–72.
doi: 10.1182/blood.V70.3.869.869
Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myélome. N Engl J Med. 1996;335(2):91–7. https://doi.org/10.1056/NEJM199607113350204 .
doi: 10.1056/NEJM199607113350204 pubmed: 8649495
Attal M, Harousseau JL, Facon T, Guilhot F, Doyen C, Fuzibet JG, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349(26):2495–502. https://doi.org/10.1056/NEJMoa032290 .
doi: 10.1056/NEJMoa032290 pubmed: 14695409
Fermand JP, Ravaud P, Chevret S, Divine M, Leblond V, Belanger C, et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood. 1998;92(9):3131–6.
doi: 10.1182/blood.V92.9.3131
Barlogie B, Smith L, Alexanian R. Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med. 1984;310(21):1353–6. https://doi.org/10.1056/NEJM198405243102104 .
doi: 10.1056/NEJM198405243102104 pubmed: 6546971
Barlogie B, Velasquez WS, Alexanian R, Cabanillas F. Etoposide, dexamethasone, cytarabine, and cisplatin in vincristine, doxorubicin, and dexamethasone-refractory myeloma. J Clin Oncol. 1989;7(10):1514–7. https://doi.org/10.1200/JCO.1989.7.10.1514 .
doi: 10.1200/JCO.1989.7.10.1514 pubmed: 2778481
Latif T, Chauhan N, Khan R, Moran A, Usmani SZ. Thalidomide and its analogues in the treatment of multiple myeloma. Exp Hematol Oncol. 2012;1(1):27. https://doi.org/10.1186/2162-3619-1-27 .
doi: 10.1186/2162-3619-1-27 pubmed: 23210501 pmcid: 3514107
Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–71. https://doi.org/10.1056/NEJM199911183412102 .
doi: 10.1056/NEJM199911183412102 pubmed: 10564685
Hus M, Dmoszynska A, Soroka-Wojtaszko M, Jawniak D, Legiec W, Ciepnuch H, et al. Thalidomide treatment of resistant or relapsed multiple myeloma patients. Haematologica. 2001;86(4):404–8.
pubmed: 11325647
Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N, et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood. 2001;98(2):492–4. https://doi.org/10.1182/blood.v98.2.492 .
doi: 10.1182/blood.v98.2.492 pubmed: 11435324
Palumbo A, Giaccone L, Bertola A, Pregno P, Bringhen S, Rus C, et al. Low-dose thalidomide plus dexamethasone is an effective salvage therapy for advanced myeloma. Haematologica. 2001;86(4):399–403.
pubmed: 11325646
Dimopoulos MA, Zervas K, Kouvatseas G, Galani E, Grigoraki V, Kiamouris C, et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann Oncol. 2001;12(7):991–5. https://doi.org/10.1023/a:1011132808904 .
doi: 10.1023/a:1011132808904 pubmed: 11521808
Moehler TM, Neben K, Benner A, Egerer G, Krasniqi F, Ho AD, et al. Salvage therapy for multiple myeloma with thalidomide and CED chemotherapy. Blood. 2001;98(13):3846–8. https://doi.org/10.1182/blood.v98.13.3846 .
doi: 10.1182/blood.v98.13.3846 pubmed: 11739195
Yakoub-Agha I, Attal M, Dumontet C, Delannoy V, Moreau P, Berthou C, et al. Thalidomide in patients with advanced multiple myeloma: a study of 83 patients—report of the Intergroupe Francophone du Myélome (IFM). Hematol J. 2002;3(4):185–92. https://doi.org/10.1038/sj.thj.6200175 .
doi: 10.1038/sj.thj.6200175 pubmed: 12189564
Tosi P, Zamagni E, Cellini C, Ronconi S, Patriarca F, Ballerini F, et al. Salvage therapy with thalidomide in patients with advanced relapsed/refractory multiple myeloma. Haematologica. 2002;87(4):408–14.
pubmed: 11940485
Neben K, Moehler T, Benner A, Kraemer A, Egerer G, Ho AD, et al. Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res. 2002;8(11):3377–82.
pubmed: 12429624
Mileshkin L, Biagi JJ, Mitchell P, Underhill C, Grigg A, Bell R, et al. Multicenter phase 2 trial of thalidomide in relapsed/refractory multiple myeloma: adverse prognostic impact of advanced age. Blood. 2003;102(1):69–77. https://doi.org/10.1182/blood-2002-09-2846 .
doi: 10.1182/blood-2002-09-2846 pubmed: 12637329
Grosbois B, Bellissant E, Moreau P, Attal M, Voillat L, Muret P, et al. Treatment of advanced multiple myeloma (MM) with thalidomide (THAL). Long term follow-up in a prospective study of 121 patients. Eur J Intern Med. 2003;4:226. https://doi.org/10.1016/S0953-6205(03)91244-1 .
doi: 10.1016/S0953-6205(03)91244-1
Kropff MH, Lang N, Bisping G, Dominé N, Innig G, Hentrich M, et al. Hyperfractionated cyclophosphamide in combination with pulsed dexamethasone and thalidomide (HyperCDT) in primary refractory or relapsed multiple myeloma. Br J Haematol. 2003;122(4):607–16. https://doi.org/10.1046/j.1365-2141.2003.04473.x .
doi: 10.1046/j.1365-2141.2003.04473.x pubmed: 12899716
Lee CK, Barlogie B, Munshi N, Zangari M, Fassas A, Jacobson J, et al. DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol. 2003;21(14):2732–9. https://doi.org/10.1200/JCO.2003.01.055 .
doi: 10.1200/JCO.2003.01.055 pubmed: 12860952
Waage A, Gimsing P, Juliusson G, Turesson I, Gulbrandsen N, Eriksson T, et al. Early response predicts thalidomide efficiency in patients with advanced multiple myeloma. Br J Haematol. 2004;125(2):149–55. https://doi.org/10.1111/j.1365-2141.2004.04879.x .
doi: 10.1111/j.1365-2141.2004.04879.x pubmed: 15059136
Richardson P, Schlossman R, Jagannath S, Alsina M, Desikan R, Blood E, et al. Thalidomide for patients with relapsed multiple myeloma after high-dose chemotherapy and stem cell transplantation: results of an open-label multicenter phase 2 study of efficacy, toxicity, and biological activity. Mayo Clin Proc. 2004;79(7):875–82. https://doi.org/10.4065/79.7.875 .
doi: 10.4065/79.7.875 pubmed: 15244383
Offidani M, Corvatta L, Marconi M, Olivieri A, Catarini M, Mele A, et al. Thalidomide plus oral melphalan compared with thalidomide alone for advanced multiple myeloma. Hematol J. 2004;5(4):312–7. https://doi.org/10.1038/sj.thj.6200401 .
doi: 10.1038/sj.thj.6200401 pubmed: 15297847
García-Sanz R, González-Porras JR, Hernández JM, Polo-Zarzuela M, Sureda A, Barrenetxea C, et al. The oral combination of thalidomide, cyclophosphamide and dexamethasone (ThaCyDex) is effective in relapsed/refractory multiple myeloma. Leukemia. 2004;18(4):856–63. https://doi.org/10.1038/sj.leu.2403322 .
doi: 10.1038/sj.leu.2403322 pubmed: 14973508
Dimopoulos MA, Hamilos G, Zomas A, Gika D, Efstathiou E, Grigoraki V, et al. Pulsed cyclophosphamide, thalidomide and dexamethasone: an oral regimen for previously treated patients with multiple myeloma. Hematol J. 2004;5(2):112–7. https://doi.org/10.1038/sj.thj.6200326 .
doi: 10.1038/sj.thj.6200326 pubmed: 15048060
Palumbo A, Bertola A, Falco P, Rosato R, Cavallo F, Giaccone L, et al. Efficacy of low-dose thalidomide and dexamethasone as first salvage regimen in multiple myeloma. Hematol J. 2004;5(4):318–24. https://doi.org/10.1038/sj.thj.6200403 .
doi: 10.1038/sj.thj.6200403 pubmed: 15297848
Terpos E, Mihou D, Szydlo R, Tsimirika K, Karkantaris C, Politou M, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia. 2005;19(11):1969–76. https://doi.org/10.1038/sj.leu.2403890 .
doi: 10.1038/sj.leu.2403890 pubmed: 16079895
Schütt P, Ebeling P, Buttkereit U, Brandhorst D, Opalka B, Poser M, et al. Thalidomide in combination with dexamethasone for pretreated patients with multiple myeloma: serum level of soluble interleukin-2 receptor as a predictive factor for response rate and for survival. Ann Hematol. 2005;84(9):594–600. https://doi.org/10.1007/s00277-005-1007-7 .
doi: 10.1007/s00277-005-1007-7 pubmed: 15744524
Badros AZ, Goloubeva O, Rapoport AP, Ratterree B, Gahres N, Meisenberg B, et al. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol. 2005;23(18):4089–99. https://doi.org/10.1200/JCO.2005.14.381 .
doi: 10.1200/JCO.2005.14.381 pubmed: 15867202
Kyriakou C, Thomson K, D’Sa S, Flory A, Hanslip J, Goldstone AH, et al. Low-dose thalidomide in combination with oral weekly cyclophosphamide and pulsed dexamethasone is a well tolerated and effective regimen in patients with relapsed and refractory multiple myeloma. Br J Haematol. 2005;129(6):763–70. https://doi.org/10.1111/j.1365-2141.2005.05521.x .
doi: 10.1111/j.1365-2141.2005.05521.x pubmed: 15953002
Prince HM, Mileshkin L, Roberts A, Ganju V, Underhill C, Catalano J, et al. A multicenter phase II trial of thalidomide and celecoxib for patients with relapsed and refractory multiple myeloma. Clin Cancer Res. 2005;11(15):5504–14. https://doi.org/10.1158/1078-0432.CCR-05-0213 .
doi: 10.1158/1078-0432.CCR-05-0213 pubmed: 16061867
Offidani M, Corvatta L, Marconi M, Visani G, Alesiani F, Brunori M, et al. Low-dose thalidomide with pegylated liposomal doxorubicin and high-dose dexamethasone for relapsed/refractory multiple myeloma: a prospective, multicenter, phase II study. Haematologica. 2006;91(1):133–6.
pubmed: 16434383
Hussein MA, Baz R, Srkalovic G, Agrawal N, Suppiah R, Hsi E, et al. Phase 2 study of pegylated liposomal doxorubicin, vincristine, decreased-frequency dexamethasone, and thalidomide in newly diagnosed and relapsed-refractory multiple myeloma. Mayo Clin Proc. 2006;81(7):889–95. https://doi.org/10.4065/81.7.889 .
doi: 10.4065/81.7.889 pubmed: 16835968
Palumbo A, Avonto I, Bruno B, Falcone A, Scalzulli PR, Ambrosini MT, et al. Intermediate-dose melphalan (100 mg/m2)/bortezomib/thalidomide/dexamethasone and stem cell support in patients with refractory or relapsed myeloma. Clin Lymphoma Myeloma. 2006;6(6):475–7. https://doi.org/10.3816/CLM.2006.n.028 .
doi: 10.3816/CLM.2006.n.028 pubmed: 16796778
Palumbo A, Ambrosini MT, Benevolo G, Pregno P, Pescosta N, Callea V, et al. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood. 2007;109(7):2767–72. https://doi.org/10.1182/blood-2006-08-042275 .
doi: 10.1182/blood-2006-08-042275 pubmed: 17148584
Suvannasankha A, Fausel C, Juliar BE, Yiannoutsos CT, Fisher WB, Ansari RH, et al. Final report of toxicity and efficacy of a phase II study of oral cyclophosphamide, thalidomide, and prednisone for patients with relapsed or refractory multiple myeloma: a Hoosier Oncology Group Trial, HEM01-21. Oncologist. 2007;12(1):99–106. https://doi.org/10.1634/theoncologist.12-1-99 .
doi: 10.1634/theoncologist.12-1-99 pubmed: 17227904
Murakami H, Handa H, Abe M, et al. Low-dose thalidomide plus low-dose dexamethasone therapy in patients with refractory multiple myeloma. Eur J Haematol. 2007;79(3):234–9. https://doi.org/10.1111/j.1600-0609.2007.00908.x .
doi: 10.1111/j.1600-0609.2007.00908.x pubmed: 17655699
Maisnar V, Radocha J, Büchler T, Bláha V, Malý J, Hájek R. Monotherapy with low-dose thalidomide for relapsed or refractory multiple myeloma: better response rate with earlier treatment. Eur J Haematol. 2007;79(4):305–9. https://doi.org/10.1111/j.1600-0609.2007.00930.x .
doi: 10.1111/j.1600-0609.2007.00930.x pubmed: 17803678
Hattori Y, Okamoto S, Shimada N, Kakimoto T, Morita K, Tanigawara Y, et al. Single-institute phase 2 study of thalidomide treatment for refractory or relapsed multiple myeloma: prognostic factors and unique toxicity profile. Cancer Sci. 2008;99(6):1243–50. https://doi.org/10.1111/j.1349-7006.2008.00792.x .
doi: 10.1111/j.1349-7006.2008.00792.x pubmed: 18384432
Morris TC, Kettle PJ, Drake M, Jones FC, Hull DR, Boyd K, et al. Clarithromycin with low dose dexamethasone and thalidomide is effective therapy in relapsed/refractory myeloma. Br J Haematol. 2008;143(3):349–54. https://doi.org/10.1111/j.1365-2141.2008.07360.x .
doi: 10.1111/j.1365-2141.2008.07360.x pubmed: 18759764
Pineda-Roman M, Zangari M, van Rhee F, Anaissie E, Szymonifka J, Hoering A, et al. VTD combination therapy with bortezomib-thalidomide-dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia. 2008;22(7):1419–27. https://doi.org/10.1038/leu.2008.99 .
doi: 10.1038/leu.2008.99 pubmed: 18432260 pmcid: 3664925
Terpos E, Kastritis E, Roussou M, Heath D, Christoulas D, Anagnostopoulos N, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia. 2008;22(12):2247–56. https://doi.org/10.1038/leu.2008.235 .
doi: 10.1038/leu.2008.235 pubmed: 18769451
Pönisch W, Rozanski M, Goldschmidt H, Hoffmann FA, Boldt T, Schwarzer A, et al. Combined bendamustine, prednisolone and thalidomide for refractory or relapsed multiple myeloma after autologous stem-cell transplantation or conventional chemotherapy: results of a Phase I clinical trial. Br J Haematol. 2008;143(2):191–200. https://doi.org/10.1111/j.1365-2141.2008.07076.x .
doi: 10.1111/j.1365-2141.2008.07076.x pubmed: 18752593
Srikanth M, Davies FE, Wu P, Jenner MW, Ethell ME, Potter MN, et al. Survival and outcome of blastoid variant myeloma following treatment with the novel thalidomide containing regime DT-PACE. Eur J Haematol. 2008;81(6):432–6. https://doi.org/10.1111/j.1600-0609.2008.01131.x .
doi: 10.1111/j.1600-0609.2008.01131.x pubmed: 18691254
Kim YK, Sohn SK, Lee JH, Yang DH, Moon JH, Ahn JS, et al. Clinical efficacy of a bortezomib, cyclophosphamide, thalidomide, and dexamethasone (Vel-CTD) regimen in patients with relapsed or refractory multiple myeloma: a phase II study. Ann Hematol. 2010;89(5):475–82. https://doi.org/10.1007/s00277-009-0856-x .
doi: 10.1007/s00277-009-0856-x pubmed: 19921192
Palumbo A, Larocca A, Falco P, Sanpaolo G, Falcone AP, Federico V, et al. Lenalidomide, melphalan, prednisone and thalidomide (RMPT) for relapsed/refractory multiple myeloma. Leukemia. 2010;24(5):1037–42. https://doi.org/10.1038/leu.2010.58 .
doi: 10.1038/leu.2010.58 pubmed: 20376079
Lee SS, Suh C, Kim BS, Chung J, Joo YD, Ryoo HM, et al. Bortezomib, doxorubicin, and dexamethasone combination therapy followed by thalidomide and dexamethasone consolidation as a salvage treatment for relapsed or refractory multiple myeloma: analysis of efficacy and safety. Ann Hematol. 2010;89(9):905–12. https://doi.org/10.1007/s00277-010-0943-z .
doi: 10.1007/s00277-010-0943-z pubmed: 20349060
Hus M, Grzasko N, Szostek M, Pluta A, Helbig G, Woszczyk D, et al. Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann Hematol. 2011;90(10):1161–6. https://doi.org/10.1007/s00277-011-1276-2 .
doi: 10.1007/s00277-011-1276-2 pubmed: 21698395 pmcid: 3168480
Offidani M, Corvatta L, Polloni C, Gentili S, Mele A, Rizzi R, et al. Thalidomide, dexamethasone, Doxil and Velcade (ThaDD-V) followed by consolidation/maintenance therapy in patients with relapsed-refractory multiple myeloma. Ann Hematol. 2011;90(12):1449–56. https://doi.org/10.1007/s00277-011-1217-0 .
doi: 10.1007/s00277-011-1217-0 pubmed: 21437586
Zamagni E, Petrucci A, Tosi P, Tacchetti P, Perrone G, Brioli A, et al. Long-term results of thalidomide and dexamethasone (thal-dex) as therapy of first relapse in multiple myeloma. Ann Hematol. 2012;91(3):419–26. https://doi.org/10.1007/s00277-011-1320-2 .
doi: 10.1007/s00277-011-1320-2 pubmed: 21901342
Yakoub-Agha I, Mary JY, Hulin C, Doyen C, Marit G, Benboubker L, et al. Low-dose vs. high-dose thalidomide for advanced multiple myeloma: a prospective trial from the Intergroupe Francophone du Myélome. Eur J Haematol. 2012;88(3):249–59. https://doi.org/10.1111/j.1600-0609.2011.01729.x .
doi: 10.1111/j.1600-0609.2011.01729.x pubmed: 22023551
Kropff M, Baylon HG, Hillengass J, Robak T, Hajek R, Liebisch P, et al. Thalidomide versus dexamethasone for the treatment of relapsed and/or refractory multiple myeloma: results from OPTIMUM, a randomized trial. Haematologica. 2012;97(5):784–91. https://doi.org/10.3324/haematol.2011.044271 .
doi: 10.3324/haematol.2011.044271 pubmed: 22133776 pmcid: 3342984
Hjorth M, Hjertner Ø, Knudsen LM, Gulbrandsen N, Holmberg E, Pedersen PT, et al. Thalidomide and dexamethasone vs. bortezomib and dexamethasone for melphalan refractory myeloma: a randomized study. Eur J Haematol. 2012;88(6):485–96. https://doi.org/10.1111/j.1600-0609.2012.01775.x .
doi: 10.1111/j.1600-0609.2012.01775.x pubmed: 22404182 pmcid: 3492844
Garderet L, Iacobelli S, Moreau P, Dib M, Lafon I, Niederwieser D, et al. Superiority of the triple combination of bortezomib-thalidomide-dexamethasone over the dual combination of thalidomide-dexamethasone in patients with multiple myeloma progressing or relapsing after autologous transplantation: the MMVAR/IFM 2005–04 randomized phase III trial from the chronic leukemia working party of the European Group for blood and marrow transplantation. J Clin Oncol. 2012;30(20):2475–82. https://doi.org/10.1200/JCO.2011.37.4918 .
doi: 10.1200/JCO.2011.37.4918 pubmed: 22585692
Offidani M, Polloni C, Cavallo F, Liberati AM, Ballanti S, Pulini S, et al. Phase II study of melphalan, thalidomide and prednisone combined with oral panobinostat in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma. 2012;53(9):1722–7. https://doi.org/10.3109/10428194.2012.664844 .
doi: 10.3109/10428194.2012.664844 pubmed: 22335534
Geng C, Hou J, Zhao Y, Ke X, Wang Z, Qiu L, et al. A multicenter, open-label phase II study of recombinant CPT (Circularly Permuted TRAIL) plus thalidomide in patients with relapsed and refractory multiple myeloma. Am J Hematol. 2014;89(11):1037–42. https://doi.org/10.1002/ajh.23822 .
doi: 10.1002/ajh.23822 pubmed: 25092564
Schey S, Brown SR, Tillotson AL, Yong K, Williams C, Davies F, et al. Bendamustine, thalidomide and dexamethasone combination therapy for relapsed/refractory myeloma patients: results of the MUKone randomized dose selection trial. Br J Haematol. 2015;170(3):336–48. https://doi.org/10.1111/bjh.13435 .
doi: 10.1111/bjh.13435 pubmed: 25891006
Mateos MV, Granell M, Oriol A, Martinez-Lopez J, Blade J, Hernandez MT, et al. Elotuzumab in combination with thalidomide and low-dose dexamethasone: a phase 2 single-arm safety study in patients with relapsed/refractory multiple myeloma. Br J Haematol. 2016;175(3):448–56. https://doi.org/10.1111/bjh.14263 .
doi: 10.1111/bjh.14263 pubmed: 27434748
Popat R, Brown SR, Flanagan L, Hall A, Gregory W, Kishore B, et al. Bortezomib, thalidomide, dexamethasone, and panobinostat for patients with relapsed multiple myeloma (MUK-six): a multicentre, open-label, phase 1/2 trial. Lancet Haematol. 2016;3(12):e572–80. https://doi.org/10.1016/S2352-3026(16)30165-X .
doi: 10.1016/S2352-3026(16)30165-X pubmed: 27843120
Kwon J, Min CK, Kim K, Han JJ, Moon JH, Kang HJ, et al. Efficacy and toxicity of the combination chemotherapy of thalidomide, alkylating agent, and steroid for relapsed/refractory myeloma patients: a report from the Korean Multiple Myeloma Working Party (KMMWP) retrospective study. Cancer Med. 2017;6(1):100–8. https://doi.org/10.1002/cam4.970 .
doi: 10.1002/cam4.970 pubmed: 27905203
Leng Y, Hou J, Jin J, Zhang M, Ke X, Jiang B, et al. Circularly permuted TRAIL plus thalidomide and dexamethasone versus thalidomide and dexamethasone for relapsed/refractory multiple myeloma: a phase 2 study. Cancer Chemother Pharmacol. 2017;79(6):1141–9. https://doi.org/10.1007/s00280-017-3310-0 .
doi: 10.1007/s00280-017-3310-0 pubmed: 28500554
Mian M, Pescosta N, Badiali S, Cappelletto PC, Marcheselli L, Luminari S, et al. Phase II trial to investigate efficacy and safety of bendamustine, dexamethasone and thalidomide in relapsed or refractory multiple myeloma patients after treatment with lenalidomide and bortezomib. Br J Haematol. 2019;185(5):944–7. https://doi.org/10.1111/bjh.15645 .
doi: 10.1111/bjh.15645 pubmed: 30478966
Ludwig H, Poenisch W, Knop S, Egle A, Schreder M, Lechner D, et al. Ixazomib–thalidomide–dexamethasone for induction therapy followed by ixazomib maintenance treatment in patients with relapsed/refractory multiple myeloma. Br J Cancer. 2019;121(9):751–7. https://doi.org/10.1038/s41416-019-0581-8 .
doi: 10.1038/s41416-019-0581-8 pubmed: 31558804 pmcid: 6889132
Lee HC, Shah JJ, Feng L, Morphey A, Johnson RJ, Wesson ET, et al. A phase I/II trial of the combination of lenalidomide, thalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Am J Hematol. 2019;94(12):E319–22. https://doi.org/10.1002/ajh.25633 .
doi: 10.1002/ajh.25633 pubmed: 31489991
Bergin K, Yuen F, Wallington-Beddoe C, Kalff A, Sirdesai S, Reynolds J, et al. A phase II trial of continuous ixazomib, thalidomide and dexamethasone for relapsed and/or refractory multiple myeloma: the Australasian Myeloma Research Consortium (AMaRC) 16–02 trial. Br J Haematol. 2021;194(3):580–6. https://doi.org/10.1111/bjh.17504 .
doi: 10.1111/bjh.17504 pubmed: 33991421
Rajkumar SV, Harousseau JL, Durie B, Anderson KC, Dimopoulos M, Kyle R, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–5. https://doi.org/10.1182/blood-2010-10-299487 .
doi: 10.1182/blood-2010-10-299487 pubmed: 21292775 pmcid: 3710442
Glasmacher A, Hahn C, Hoffmann F, Naumann R, Goldschmidt H, von Lilienfeld-Toal M, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol. 2006;132(5):584–93. https://doi.org/10.1111/j.1365-2141.2005.05914.x .
doi: 10.1111/j.1365-2141.2005.05914.x pubmed: 16445831
Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000;96(9):2943–50.
doi: 10.1182/blood.V96.9.2943
von Lilienfeld-Toal M, Hahn-Ast C, Furkert K, Hoffmann F, Naumann R, Bargou R, et al. A systematic review of phase II trials of thalidomide/dexamethasone combination therapy in patients with relapsed or refractory multiple myeloma. Eur J Haematol. 2008;81(4):247–52. https://doi.org/10.1111/j.1600-0609.2008.01121.x .
doi: 10.1111/j.1600-0609.2008.01121.x
Lee JH, Kim SH. Treatment of relapsed and refractory multiple myeloma. Blood Res. 2020;55(S1):S43–53. https://doi.org/10.5045/br.2020.S008 .
doi: 10.5045/br.2020.S008 pubmed: 32719176
Bogeljić Patekar M, Milunović V, Mišura Jakobac K, Perica D, Mandac Rogulj I, Kursar M, et al. Bendamustine: an old drug in the new era for patients with non-Hodgkin lymphomas and chronic lymphocytic leukemia. Acta Clin Croat. 2018;57(3):542–53. https://doi.org/10.20471/acc.2018.57.03.18 .
doi: 10.20471/acc.2018.57.03.18 pubmed: 31168188 pmcid: 6536274
Kumar SK, Krishnan A, LaPlant B, Laumann K, Roy V, Zimmerman T, et al. Bendamustine, lenalidomide, and dexamethasone (BRD) is highly effective with durable responses in relapsed multiple myeloma. Am J Hematol. 2015;90(12):1106–10. https://doi.org/10.1002/ajh.24181 .
doi: 10.1002/ajh.24181 pubmed: 26331432
Mey UJ, Brugger W, Schwarb H, Pederiva S, Schwarzer A, Dechow T, et al. Bendamustine, lenalidomide and dexamethasone (BRd) has high activity as 2nd -line therapy for relapsed and refractory multiple myeloma—a phase II trial. Br J Haematol. 2017;176(5):770–82. https://doi.org/10.1111/bjh.14481 .
doi: 10.1111/bjh.14481 pubmed: 27983764
Dhakal B, D’Souza A, Hamadani M, Arce-Lara C, Schroeder K, Chhabra S, et al. Phase I/II trial of bendamustine, ixazomib, and dexamethasone in relapsed/refractory multiple myeloma. Blood Cancer J. 2019;9(8):56. https://doi.org/10.1038/s41408-019-0219-3 .
doi: 10.1038/s41408-019-0219-3 pubmed: 31358733 pmcid: 6663939
Zangari M, Anaissie E, Barlogie B, Badros A, Desikan R, Gopal AV, et al. Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy. Blood. 2001;98(5):1614–5. https://doi.org/10.1182/blood.v98.5.1614 .
doi: 10.1182/blood.v98.5.1614 pubmed: 11520815
Gerrie AS, Mikhael JR, Cheng L, Jiang H, Kukreti V, Panzarella T, et al. D(T)PACE as salvage therapy for aggressive or refractory multiple myeloma. Br J Haematol. 2013;161(6):802–10. https://doi.org/10.1111/bjh.12325 .
doi: 10.1111/bjh.12325 pubmed: 23594335
Buda G, Orciuolo E, Galimberti S, Ghio F, Petrini M. VDTPACE as salvage therapy for heavily pretreated MM patients. Blood. 2013;122(21):5377. https://doi.org/10.1182/blood.V122.21.5377.5377 .
doi: 10.1182/blood.V122.21.5377.5377
Beyer K, Rosner S, Woo KM, Devlin SM, Landau H, Hassoun H, et al. Analysis of VDT-PACE utilization in multiple myeloma patients treated at MSKCC for relapsed disease or cytoreduction and stem cell mobilization after initial induction therapy. Blood. 2014;124(21):3459. https://doi.org/10.1182/blood.V124.21.3459.3459 .
doi: 10.1182/blood.V124.21.3459.3459
Ainley L, Chavda SJ, Counsell N, Cheesman S, Newrick F, Horder J, et al. DT-PACE/ESHAP chemotherapy regimens as salvage therapy for multiple myeloma prior to autologous stem cell transplantation. Br J Haematol. 2021;192(3):e73–7. https://doi.org/10.1111/bjh.17248 .
doi: 10.1111/bjh.17248 pubmed: 33236352
Lakshman A, Singh PP, Rajkumar SV, Dispenzieri A, Lacy MQ, Gertz MA, et al. Efficacy of VDT PACE-like regimens in treatment of relapsed/refractory multiple myeloma. Am J Hematol. 2018;93(2):179–86. https://doi.org/10.1002/ajh.24954 .
doi: 10.1002/ajh.24954 pubmed: 29067723
Pineda-Roman M, Zangari M, Haessler J, Anaissie E, Tricot G, van Rhee F, et al. Sustained complete remissions in multiple myeloma linked to bortezomib in total therapy 3: comparison with total therapy 2. Br J Haematol. 2008;140(6):625–34. https://doi.org/10.1111/j.1365-2141.2007.06921.x .
doi: 10.1111/j.1365-2141.2007.06921.x pubmed: 18302711 pmcid: 3655432
Koeppen S. Treatment of multiple myeloma: thalidomide-, bortezomib-, and lenalidomide-induced peripheral neuropathy. Oncol Res Treat. 2014;37(9):506–13. https://doi.org/10.1159/000365534 .
doi: 10.1159/000365534 pubmed: 25231692
Mohan M, Matin A, Davies FE. Update on the optimal use of bortezomib in the treatment of multiple myeloma. Cancer Manag Res. 2017;9:51–63. https://doi.org/10.2147/CMAR.S105163 .
doi: 10.2147/CMAR.S105163 pubmed: 28280389 pmcid: 5338851
Mikhael JR, Reeder CB, Libby EN, Costa LJ, Bergsagel PL, Buadi F, et al. Phase Ib/II trial of CYKLONE (cyclophosphamide, carfilzomib, thalidomide and dexamethasone) for newly diagnosed myeloma. Br J Haematol. 2015;169(2):219–27. https://doi.org/10.1111/bjh.13296 .
doi: 10.1111/bjh.13296 pubmed: 25683772 pmcid: 4521972
Waxman AJ, Clasen S, Hwang WT, Garfall A, Vogl DT, Carver J, et al. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol. 2018;4(3): e174519. https://doi.org/10.1001/jamaoncol.2017.4519 .
doi: 10.1001/jamaoncol.2017.4519 pubmed: 29285538
Chng W, Lin C, Li X, Nagarajan C, Yoon S, Durie BGM. Phase 2 study of daratumumab in combination with thalidomide and dexamethasone in Asian patients with relapsed/refractory myeloma (RRMM)—interim analysis of a trial by the Asian Myeloma Network (AMN). Blood. 2020;136(Suppl 1):21. https://doi.org/10.1182/blood-2020-139092 .
doi: 10.1182/blood-2020-139092
Chanan-Khan A. Immunomodulating drugs for the treatment of cancer. 1st ed. Philadelphia: Lippincott Williams & Wilkins: Wolters Kluwer; 2011.
Sonneveld P, De Wit E, Moreau P. How have evolutions in strategies for the treatment of relapsed/refractory multiple myeloma translated into improved outcomes for patients? Crit Rev Oncol Hematol. 2017;112:153–70. https://doi.org/10.1016/j.critrevonc.2017.02.007 .
doi: 10.1016/j.critrevonc.2017.02.007 pubmed: 28325256
Thompson JL, Hansen LA. Thalidomide dosing in patients with relapsed or refractory multiple myeloma. Ann Pharmacother. 2003;37(4):571–6. https://doi.org/10.1345/aph.1A155 .
doi: 10.1345/aph.1A155 pubmed: 12659617
Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23. https://doi.org/10.1038/sj.leu.2405062 .
doi: 10.1038/sj.leu.2405062 pubmed: 18094721
Guglielmelli T, Petrucci MT, Saglio G, Palumbo A. Thalidomide after lenalidomide: a possible treatment regimen in relapsed refractory multiple myeloma patients. Br J Haematol. 2011;152(1):108–10. https://doi.org/10.1111/j.1365-2141.2010.08416.x .
doi: 10.1111/j.1365-2141.2010.08416.x pubmed: 21083653
Dingli D, Ailawadhi S, Bergsagel PL, Buadi FK, Dispenzieri A, Fonseca R, et al. Therapy for relapsed multiple myeloma: guidelines from the mayo stratification for myeloma and risk-adapted therapy. Mayo Clin Proc. 2017;92(4):578–98. https://doi.org/10.1016/j.mayocp.2017.01.003 .
doi: 10.1016/j.mayocp.2017.01.003 pubmed: 28291589
Palumbo A, Cerrato C. Diagnosis and therapy of multiple myeloma. Korean J Intern Med. 2013;28(3):263–73. https://doi.org/10.3904/kjim.2013.28.3.263 .
doi: 10.3904/kjim.2013.28.3.263 pubmed: 23682217 pmcid: 3654121
Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR. Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431–6. https://doi.org/10.1200/JCO.2005.03.0221 .
doi: 10.1200/JCO.2005.03.0221 pubmed: 16365178
Paul B, Lipe B, Ocio EM, Usmani SZ. Induction therapy for newly diagnosed multiple myeloma. Am Soc Clin Oncol Educ Book. 2019;39:e176–86. https://doi.org/10.1200/EDBK_238527 .
doi: 10.1200/EDBK_238527 pubmed: 31099624
Mai EK, Bertsch U, Dürig J, Kunz C, Haenel M, Blau IW, et al. Phase III trial of bortezomib, cyclophosphamide and dexamethasone (VCD) versus bortezomib, doxorubicin and dexamethasone (PAd) in newly diagnosed myeloma. Leukemia. 2015;29(8):1721–9. https://doi.org/10.1038/leu.2015.80 .
doi: 10.1038/leu.2015.80 pubmed: 25787915
Moreau P, Hulin C, Macro M, Caillot D, Chaleteix C, Roussel M, et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial. Blood. 2016;127(21):2569–74. https://doi.org/10.1182/blood-2016-01-693580 .
doi: 10.1182/blood-2016-01-693580 pubmed: 27002117
Leiba M, Kedmi M, Duek A, Freidman T, Weiss M, Leiba R, et al. Bortezomib-cyclophosphamide-dexamethasone (VCD) versus bortezomib-thalidomide-dexamethasone (VTD) -based regimens as induction therapies in newly diagnosed transplant eligible patients with multiple myeloma: a meta-analysis. Br J Haematol. 2014;166(5):702–10. https://doi.org/10.1111/bjh.12946 .
doi: 10.1111/bjh.12946 pubmed: 24861981
Rosinol L, Hebraud B, Oriol A, Colin AL, Tamayo RR, Hulin C, et al. Integrated analysis of bortezomib–lenalidomide–dexamethasone vs bortezomib–thalidomide–dexamethasone in transplant-eligible newly diagnosed myeloma. Clin Lymphoma Myeloma Leuk. 2019;19(Suppl 10):1–2.
Zangari M, van Rhee F, Anaissie E, Pineda-Roman M, Haessler J, Crowley J, et al. Eight-year median survival in multiple myeloma after total therapy 2: roles of thalidomide and consolidation chemotherapy in the context of total therapy 1. Br J Haematol. 2008;141(4):433–44. https://doi.org/10.1111/j.1365-2141.2008.06982.x .
doi: 10.1111/j.1365-2141.2008.06982.x pubmed: 18371114 pmcid: 3649864
Wester R, van der Holt B, Asselbergs E, Zweegman S, Kersten MJ, Vellenga E, et al. Phase II study of carfilzomib, thalidomide, and low-dose dexamethasone as induction and consolidation in newly diagnosed, transplant eligible patients with multiple myeloma; the Carthadex trial. Haematologica. 2019;104(11):2265–73. https://doi.org/10.3324/haematol.2018.205476 .
doi: 10.3324/haematol.2018.205476 pubmed: 30948492 pmcid: 6821616
Paumgartten FJR. The tale of lenalidomide clinical superiority over thalidomide and regulatory and cost-effectiveness issues. Cien Saude Colet. 2019;24(10):3783–92. https://doi.org/10.1590/1413-812320182410.28522017 .
doi: 10.1590/1413-812320182410.28522017 pubmed: 31577009
Lee HS, Min CK, Lee JJ, Kim K, Kim SJ, Yoon DH, et al. The clinical impact of thalidomide maintenance after autologous stem cell transplantation in patients with newly diagnosed multiple myeloma in real clinical practice of Korea. Ann Hematol. 2016;95(6):911–9. https://doi.org/10.1007/s00277-016-2660-8 .
doi: 10.1007/s00277-016-2660-8 pubmed: 27052989
Ludwig H, Durie BG, McCarthy P, Palumbo A, San Miguel J, Barlogie B, et al. IMWG consensus on maintenance therapy in multiple myeloma. Blood. 2012;119(13):3003–15. https://doi.org/10.1182/blood-2011-11-374249 .
doi: 10.1182/blood-2011-11-374249 pubmed: 22271445 pmcid: 3321864
Berenson JR. Antitumor effects of bisphosphonates: from the laboratory to the clinic. Curr Opin Support Palliat Care. 2011;5(3):233–40. https://doi.org/10.1097/SPC.0b013e328349dc17 .
doi: 10.1097/SPC.0b013e328349dc17 pubmed: 21825999
Attal M, Harousseau JL, Leyvraz S, Doyen C, Hulin C, Benboubker L, et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood. 2006;108(10):3289–94. https://doi.org/10.1182/blood-2006-05-022962 .
doi: 10.1182/blood-2006-05-022962 pubmed: 16873668
Dimopoulos MA, Jakubowiak AJ, McCarthy PL, Orlowski RZ, Attal M, Bladé J, et al. Developments in continuous therapy and maintenance treatment approaches for patients with newly diagnosed multiple myeloma. Blood Cancer J. 2020;10(2):17. https://doi.org/10.1038/s41408-020-0273-x .
doi: 10.1038/s41408-020-0273-x pubmed: 32054831 pmcid: 7018731
Morgan GJ, Gregory WM, Davies FE, Bell SE, Szubert AJ, Brown JM, et al. The role of maintenance thalidomide therapy in multiple myeloma: MRC Myeloma IX results and meta-analysis. Blood. 2012;119(1):7–15. https://doi.org/10.1182/blood-2011-06-357038 .
doi: 10.1182/blood-2011-06-357038 pubmed: 22021371
Barlogie B, Attal M, Crowley J, van Rhee F, Szymonifka J, Moreau P, et al. Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the intergroupe francophone du myelome, southwest oncology group, and university of arkansas for medical sciences. J Clin Oncol. 2010;28(7):1209–14. https://doi.org/10.1200/JCO.2009.25.6081 .
doi: 10.1200/JCO.2009.25.6081 pubmed: 20085933 pmcid: 2834471
Ramasamy K, Dhanasiri S, Thom H, Buchanan V, Robinson S, D’Souza VK, et al. Relative efficacy of treatment options in transplant-ineligible newly diagnosed multiple myeloma: results from a systematic literature review and network meta-analysis. Leuk Lymphoma. 2020;61(3):668–79. https://doi.org/10.1080/10428194.2019.1683736 .
doi: 10.1080/10428194.2019.1683736 pubmed: 31709875
Fayers PM, Palumbo A, Hulin C, Waage A, Wijermans P, Beksaç M, et al. Thalidomide for previously untreated elderly patients with multiple myeloma: meta-analysis of 1685 individual patient data from 6 randomized clinical trials. Blood. 2011;118(5):1239–47. https://doi.org/10.1182/blood-2011-03-341669 .
doi: 10.1182/blood-2011-03-341669 pubmed: 21670471
Kaweme NM, Changwe GJ, Zhou F. Approaches and challenges in the management of multiple myeloma in the very old: future treatment prospects. Front Med (Lausanne). 2021;8: 612696. https://doi.org/10.3389/fmed.2021.612696 .
doi: 10.3389/fmed.2021.612696 pubmed: 33718400 pmcid: 7947319
Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371(10):906–17. https://doi.org/10.1056/NEJMoa1402551 .
doi: 10.1056/NEJMoa1402551 pubmed: 25184863
Stewart AK, Jacobus S, Fonseca R, Weiss M, Callander NS, Chanan-Khan AA, et al. Melphalan, prednisone, and thalidomide vs melphalan, prednisone, and lenalidomide (ECOG E1A06) in untreated multiple myeloma. Blood. 2015;126(11):1294–301. https://doi.org/10.1182/blood-2014-12-613927 .
doi: 10.1182/blood-2014-12-613927 pubmed: 26157076 pmcid: 4566809
Zweegman S, van der Holt B, Mellqvist UH, Salomo M, Bos GM, Levin MD, et al. Melphalan, prednisone, and lenalidomide versus melphalan, prednisone, and thalidomide in untreated multiple myeloma. Blood. 2016;127(9):1109–16. https://doi.org/10.1182/blood-2015-11-679415 .
doi: 10.1182/blood-2015-11-679415 pubmed: 26802176
Gavriatopoulou M, Terpos E, Kastritis E, Dimopoulos MA. Current treatments for renal failure due to multiple myeloma. Expert Opin Pharmacother. 2016;17(16):2165–77. https://doi.org/10.1080/14656566.2016.1236915 .
doi: 10.1080/14656566.2016.1236915 pubmed: 27646819
Chu P. Managing multiple myeloma patients with renal failure. Hong Kong J Nephrol. 2013;15(2):62–7. https://doi.org/10.1016/j.hkjn.2013.09.001 .
doi: 10.1016/j.hkjn.2013.09.001
Bozic B, Rutner J, Zheng C, Ruckser R, Selimi F, Racz K, et al. Advances in the treatment of relapsed and refractory multiple myeloma in patients with renal insufficiency: novel agents, immunotherapies and beyond. Cancers (Basel). 2021;13(20):5036. https://doi.org/10.3390/cancers13205036 .
doi: 10.3390/cancers13205036 pubmed: 34680184 pmcid: 8533858
Bridoux F, Leung N, Belmouaz M, Royal V, Ronco P, Nasr SH, et al. Management of acute kidney injury in symptomatic multiple myeloma. Kidney Int. 2021;99(3):570–80. https://doi.org/10.1016/j.kint.2020.11.010 .
doi: 10.1016/j.kint.2020.11.010 pubmed: 33440212
Gavriatopoulou M, Terpos E, Dimopoulos MA. IMiDs for myeloma induced renal impairment. Oncotarget. 2018;9(84):35476–7. https://doi.org/10.18632/oncotarget.26270 .
doi: 10.18632/oncotarget.26270 pubmed: 30464802 pmcid: 6231459
Wanchoo R, Abudayyeh A, Doshi M, Edeani A, Glezerman IG, Monga D, et al. Renal toxicities of novel agents used for treatment of multiple myeloma. Clin J Am Soc Nephrol. 2017;12(1):176–89. https://doi.org/10.2215/CJN.06100616 .
doi: 10.2215/CJN.06100616 pubmed: 27654928
Palumbo A, Facon T, Sonneveld P, Bladè J, Offidani M, Gay F, et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood. 2008;111(8):3968–77. https://doi.org/10.1182/blood-2007-10-117457 .
doi: 10.1182/blood-2007-10-117457 pubmed: 18245666
Chen N, Lau H, Kong L, Kumar G, Zeldis JB, Knight R, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol. 2007;47(12):1466–75. https://doi.org/10.1177/0091270007309563 .
doi: 10.1177/0091270007309563 pubmed: 17954615
Tosi P, Zamagni E, Cellini C, Cangini D, Tacchetti P, Tura S, et al. Thalidomide alone or in combination with dexamethasone in patients with advanced, relapsed or refractory multiple myeloma and renal failure. Eur J Haematol. 2004;73(2):98–103. https://doi.org/10.1111/j.1600-0609.2004.00272.x .
doi: 10.1111/j.1600-0609.2004.00272.x pubmed: 15245508
Kastritis E, Anagnostopoulos A, Roussou M, Gika D, Matsouka C, Barmparousi D, et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents. Haematologica. 2007;92(4):546–9. https://doi.org/10.3324/haematol.10759 .
doi: 10.3324/haematol.10759 pubmed: 17488666
Tosi P, Zamagni E, Tacchetti P, Ceccolini M, Perrone G, Brioli A, et al. Thalidomide-dexamethasone as induction therapy before autologous stem cell transplantation in patients with newly diagnosed multiple myeloma and renal insufficiency. Biol Blood Marrow Transplant. 2010;16(8):1115–21. https://doi.org/10.1016/j.bbmt.2010.02.020 .
doi: 10.1016/j.bbmt.2010.02.020 pubmed: 20197100
Morabito F, Gentile M, Mazzone C, Rossi D, Di Raimondo F, Bringhen S, et al. Safety and efficacy of bortezomib–melphalan–prednisone–thalidomide followed by bortezomib-thalidomide maintenance (VMPT-VT) versus bortezomib–melphalan–prednisone (VMP) in untreated multiple myeloma patients with renal impairment. Blood. 2011;118(22):5759–66. https://doi.org/10.1182/blood-2011-05-353995 .
doi: 10.1182/blood-2011-05-353995 pubmed: 21951682
Ramasamy K, Hazel B, Mahmood S, Corderoy S, Schey S. Bendamustine in combination with thalidomide and dexamethasone is an effective therapy for myeloma patients with end stage renal disease. Br J Haematol. 2011;155(5):632–4. https://doi.org/10.1111/j.1365-2141.2011.08754.x .
doi: 10.1111/j.1365-2141.2011.08754.x pubmed: 21689088
Dimopoulos MA, Roussou M, Gkotzamanidou M, Nikitas N, Psimenou E, Mparmparoussi D, et al. The role of novel agents on the reversibility of renal impairment in newly diagnosed symptomatic patients with multiple myeloma. Leukemia. 2013;27(2):423–9. https://doi.org/10.1038/leu.2012.182 .
doi: 10.1038/leu.2012.182 pubmed: 22763386
Dimopoulos MA, Cheung MC, Roussel M. Impact of renal impairment on outcomes with lenalidomide and dexamethasone treatment in the FIRST trial, a randomized, open-label phase 3 trial in transplant-ineligible patients with multiple myeloma. Haematologica. 2016;101(3):363–70. https://doi.org/10.3324/haematol.2015.133629 .
doi: 10.3324/haematol.2015.133629 pubmed: 26659916 pmcid: 4815728
Ramasamy K, Drayson MT, Iqbal G, Stalker V, Akhtar S, Dunn J, et al. Optimal—a study of bortezomib, bendamustine and dexamethasone (BBD) vs thalidomide, bendamustine and dexamethasone (BTD) in patients with renal failure defined as an Egfr below 30 Mls/Min. Blood. 2019;134(Suppl 1):3135. https://doi.org/10.1182/blood-2019-128157 .
doi: 10.1182/blood-2019-128157
Kumar S, Flinn I, Richardson PG, Hari P, Callander N, Noga SJ, et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood. 2012;119(19):4375–82. https://doi.org/10.1182/blood-2011-11-395749 .
doi: 10.1182/blood-2011-11-395749 pubmed: 22422823
Schmitt S, Mailaender V, Egerer G, Leo A, Becker S, Reinhardt P, et al. Successful autologous peripheral blood stem cell transplantation in a Jehovah’s Witness with multiple myeloma: review of literature and recommendations for high-dose chemotherapy without support of allogeneic blood products. Int J Hematol. 2008;87(3):289–97. https://doi.org/10.1007/s12185-008-0055-x .
doi: 10.1007/s12185-008-0055-x pubmed: 18317881
Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–31. https://doi.org/10.1056/NEJMoa1607751 .
doi: 10.1056/NEJMoa1607751 pubmed: 27705267
Xia R, Cheng Y, Han X, Wei Y, Wei X. Ikaros proteins in tumor: current perspectives and new developments. Front Mol Biosci. 2021;8: 788440. https://doi.org/10.3389/fmolb.2021.788440 .
doi: 10.3389/fmolb.2021.788440 pubmed: 34950704 pmcid: 8689071
Swan D, Routledge D, Harrison S. The evolving status of immunotherapies in multiple myeloma: the future role of bispecific antibodies. Br J Haematol. 2022;196(3):488–506. https://doi.org/10.1111/bjh.17805 .
doi: 10.1111/bjh.17805 pubmed: 34472091
Hernández-Rivas JÁ, Ríos-Tamayo R, Encinas C, Alonso R, Lahuerta JJ. The changing landscape of relapsed and/or refractory multiple myeloma (MM): fundamentals and controversies. Biomark Res. 2022;10(1):1. https://doi.org/10.1186/s40364-021-00344-2 .
doi: 10.1186/s40364-021-00344-2 pubmed: 35000618 pmcid: 8743063
Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–24. https://doi.org/10.1016/S0140-6736(21)00933-8 .
doi: 10.1016/S0140-6736(21)00933-8 pubmed: 34175021
Hayden PJ, Roddie C, Bader P, Basak GW, Bonig H, Bonini C, et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann Oncol. 2022;33(3):259–75. https://doi.org/10.1016/j.annonc.2021.12.003 .
doi: 10.1016/j.annonc.2021.12.003 pubmed: 34923107
Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21(2):207–21. https://doi.org/10.1016/S1470-2045(19)30788-0 .
doi: 10.1016/S1470-2045(19)30788-0 pubmed: 31859245
Becnel MR, Lee HC. The role of belantamab mafodotin for patients with relapsed and/or refractory multiple myeloma. Ther Adv Hematol. 2020;11:2040620720979813. https://doi.org/10.1177/2040620720979813 .
doi: 10.1177/2040620720979813 pubmed: 33403093 pmcid: 7739070
Popat R, Nooka A, Stockerl-Goldstein K, Abonour R, Ramaekers R, Khot A, et al. DREAMM-6: safety, tolerability and clinical activity of belantamab mafodotin (Belamaf) in combination with bortezomib/dexamethasone (BorDex) in relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Suppl 1):19–20. https://doi.org/10.1182/blood-2020-139332 .
doi: 10.1182/blood-2020-139332
Reece D, Kouroukis CT, Leblanc R, Sebag M, Song K, Ashkenas J. Practical approaches to the use of lenalidomide in multiple myeloma: a Canadian consensus. Adv Hematol. 2012;2012: 621958. https://doi.org/10.1155/2012/621958 .
doi: 10.1155/2012/621958 pubmed: 23097669 pmcid: 3477526
Works M, Soni N, Hauskins C, Sierra C, Baturevych A, Jones JC, et al. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. Mol Cancer Ther. 2019;18(12):2246–57. https://doi.org/10.1158/1535-7163.MCT-18-1146 .
doi: 10.1158/1535-7163.MCT-18-1146 pubmed: 31395689
Wang X, Walter M, Urak R, Weng L, Huynh C, Lim L, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin Cancer Res. 2018;24(1):106–19. https://doi.org/10.1158/1078-0432.CCR-17-0344 .
doi: 10.1158/1078-0432.CCR-17-0344 pubmed: 29061640
Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer J. 2021;11(4):84. https://doi.org/10.1038/s41408-021-00469-5 .
doi: 10.1038/s41408-021-00469-5 pubmed: 33927192 pmcid: 8085238
Cho SF, Lin L, Xing L, Li Y, Wen K, Yu T, et al. The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Adv. 2020;4(17):4195–207. https://doi.org/10.1182/bloodadvances.2020002524 .
doi: 10.1182/bloodadvances.2020002524 pubmed: 32898244 pmcid: 7479960
Louvet C, Nadeem O, Smith EL. Finding the optimal partner to pair with bispecific antibody therapy for multiple myeloma. Blood Cancer Discov. 2021;2(4):297–9. https://doi.org/10.1158/2643-3230.BCD-21-0073 .
doi: 10.1158/2643-3230.BCD-21-0073 pubmed: 34258583 pmcid: 8265983
Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med. 2021;13(575):eabb6295. https://doi.org/10.1126/scitranslmed.abb6295 .
doi: 10.1126/scitranslmed.abb6295 pubmed: 33408186 pmcid: 8045771
Bhattacharya K, Bentley JP, Ramachandran S, Chang Y, Banahan BF 3rd, Shah R, et al. Phase-specific and lifetime costs of multiple myeloma among older adults in the US. JAMA Netw Open. 2021;4(7): e2116357. https://doi.org/10.1001/jamanetworkopen.2021.16357 .
doi: 10.1001/jamanetworkopen.2021.16357 pubmed: 34241627 pmcid: 8271356
Blommestein HM, Franken MG, van Beurden-Tan CHY, Blijlevens NMA, Huijgens PC, Sonneveld P, et al. Cost-effectiveness of novel treatment sequences for transplant-ineligible patients with multiple myeloma. JAMA Netw Open. 2021;4(3): e213497. https://doi.org/10.1001/jamanetworkopen.2021.3497 .
doi: 10.1001/jamanetworkopen.2021.3497 pubmed: 33779744 pmcid: 8008287

Auteurs

Bruno Almeida Costa (BA)

Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Tarek H Mouhieddine (TH)

Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA.

Joshua Richter (J)

Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA. joshua.richter@mountsinai.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH