Characterizing the Electron Transport Chain: Structural Approach.
Assembly
Blue Native Gel
Brain
Muscle
Respiratory complex
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
30
6
2022
pubmed:
1
7
2022
medline:
6
7
2022
Statut:
ppublish
Résumé
The mitochondrial respiratory chain which carries out the oxidative phosphorylation (OXPHOS) consists of five multi-subunit protein complexes. Emerging evidences suggest that the supercomplexes which further consist of multiple respiratory complexes play important role in regulating OXPHOS function. Dysfunction of the respiratory chain and its regulation has been implicated in various human diseases including neurodegenerative diseases and muscular disorders. Many mouse models have been established which exhibit mitochondrial defects in brain and muscles. Protocols presented here aim to help to analyze the structures of mitochondrial respiratory chain which include the preparation of the tissue samples, isolation of mitochondrial membrane proteins, and analysis of their respiratory complexes by Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) in particular.
Identifiants
pubmed: 35771438
doi: 10.1007/978-1-0716-2309-1_7
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
107-115Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM109434
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG013319
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science (New York, NY) 283(5407):1488–1493. https://doi.org/10.1126/science.283.5407.1488
doi: 10.1126/science.283.5407.1488
Porras CA, Bai Y (2015) Respiratory supercomplexes: plasticity and implications. Front Biosci (Landmark Ed) 20:621
doi: 10.2741/4327
Vartak R, Porras CA-M, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4(8):582–590
doi: 10.1007/s13238-013-3032-y
Guerrero-Castillo S, Baertling F, Kownatzki D, Wessels HJ, Arnold S, Brandt U, Nijtmans L (2017) The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab 25(1):128–139
doi: 10.1016/j.cmet.2016.09.002
Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F (2009) Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Biochim Biophys Acta 1793(1):97–107. https://doi.org/10.1016/j.bbamcr.2008.05.003
doi: 10.1016/j.bbamcr.2008.05.003
Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 1863(5):1066–1077
doi: 10.1016/j.bbadis.2016.11.010
Trushina E, McMurray CJN (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145(4):1233–1248
doi: 10.1016/j.neuroscience.2006.10.056
Schapira A, Gu M, Taanman JW, Tabrizi S, Seaton T, Cleeter M, Cooper JM (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 44(S1 1):S89–S98
doi: 10.1002/ana.410440714
Haas RH (2019) Mitochondrial dysfunction in aging and diseases of aging. Multidisciplinary Digital Publishing Institute, Basel
Chesselet M-F, Richter FJTLN (2011) Modelling of Parkinson’s disease in mice. Lancet Neurol 10(12):1108–1118
doi: 10.1016/S1474-4422(11)70227-7
Eckert A, Schulz KL, Rhein V, Götz J (2010) Convergence of amyloid-β and tau pathologies on mitochondria in vivo. Mol Neurobiol 41(2-3):107–114
doi: 10.1007/s12035-010-8109-5
Vempati UD, Torraco A, Moraes CTJM (2008) Mouse models of oxidative phosphorylation dysfunction and disease. Methods 46(4):241–247
doi: 10.1016/j.ymeth.2008.09.008
Wittig I, Braun H-P, Schägger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428. https://doi.org/10.1038/nprot.2006.62
doi: 10.1038/nprot.2006.62
McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361(3):462–469
doi: 10.1016/j.jmb.2006.06.057
Eubel H, Jänsch L, Braun H-P (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133(1):274–286. https://doi.org/10.1104/pp.103.024620
doi: 10.1104/pp.103.024620
Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19(8):1777–1783. https://doi.org/10.1093/emboj/19.8.1777
doi: 10.1093/emboj/19.8.1777