Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
05
04
2021
accepted:
19
05
2022
pubmed:
1
7
2022
medline:
15
7
2022
entrez:
30
6
2022
Statut:
ppublish
Résumé
Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts targeting specific spinal segments produced sustained arm movements, enabling monkeys with arm paralysis to perform an unconstrained reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that residual descending inputs were necessary to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.
Identifiants
pubmed: 35773543
doi: 10.1038/s41593-022-01106-5
pii: 10.1038/s41593-022-01106-5
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
924-934Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
ICCP. International Campaign for Cures of Spinal Cord Injury Paralysis. http://www.campaignforcure.org
Stroke Facts (National Center for Chronic Disease Prevention and Health Promotion, Division for Heart Disease and Stroke. Stroke facts, 2020); https://www.cdc.gov/stroke/facts.htm
Anderson, K. D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383 (2004).
pubmed: 15672628
doi: 10.1089/neu.2004.21.1371
Moreland, J. D. et al. Needs assessment of individuals with stroke after discharge from hospital stratified by acute Functional Independence Measure score. Disabil. Rehabil. 31, 2185–2195 (2009).
pubmed: 19903128
doi: 10.3109/09638280902951846
Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).
pubmed: 18558853
doi: 10.1146/annurev.neuro.31.060407.125547
Griffin, D. M. & Strick, P. L. The motor cortex uses active suppression to sculpt movement. Sci. Adv. 6, eabb8395 (2020).
pubmed: 32937371
pmcid: 7442473
doi: 10.1126/sciadv.abb8395
Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6, 1309–1316 (2003).
pubmed: 14625555
doi: 10.1038/nn1154
Lebedev, M. A. & Nicolelis, M. A. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017).
pubmed: 28275048
doi: 10.1152/physrev.00027.2016
Nishimura, Y., Perlmutter, S. I. & Fetz, E. E. Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front. Neural Circuits 7, 57 (2013).
pubmed: 23596396
pmcid: 3622884
doi: 10.3389/fncir.2013.00057
Shanechi, M. M., Hu, R. C. & Williams, Z. M. A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars. Nat. Commun. 5, 3237 (2014).
pubmed: 24549394
doi: 10.1038/ncomms4237
Zimmermann, J. B. & Jackson, A. Closed-loop control of spinal cord stimulation to restore hand function after paralysis. Front. Neurosci. 8, 87 (2014).
pubmed: 24904251
pmcid: 4032985
doi: 10.3389/fnins.2014.00087
Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 (2012).
pubmed: 22522928
pmcid: 3358575
doi: 10.1038/nature10987
Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature https://doi.org/10.1038/nature17435 (2016).
Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet https://doi.org/10.1016/S0140-6736(17)30601-3 (2017).
Giat, Y., Mizrahi, J. & Levy, M. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES. IEEE Trans. Biomed. Eng. 40, 664–674 (1993).
pubmed: 8244427
doi: 10.1109/10.237696
Edgerton, V. R. et al. Training locomotor networks. Brain Res. Rev. 57, 241–254 (2008).
pubmed: 18022244
doi: 10.1016/j.brainresrev.2007.09.002
Holinski, B. J. et al. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J. Neural Eng. 13, 056016 (2016).
pubmed: 27619069
pmcid: 5093020
doi: 10.1088/1741-2560/13/5/056016
Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).
pubmed: 24305828
pmcid: 6618777
doi: 10.1523/JNEUROSCI.1688-13.2013
Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).
pubmed: 30382196
pmcid: 6268129
doi: 10.1038/s41593-018-0262-6
Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).
pubmed: 30382197
doi: 10.1038/s41586-018-0649-2
Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).
pubmed: 24713270
pmcid: 3999714
doi: 10.1093/brain/awu038
Ichiyama, R. M., Gerasimenko, Y. P., Zhong, H., Roy, R. R. & Edgerton, V. R. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci. Lett. 383, 339–344 (2005).
pubmed: 15878636
doi: 10.1016/j.neulet.2005.04.049
Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).
pubmed: 19767747
pmcid: 2828944
doi: 10.1038/nn.2401
van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).
pubmed: 22654062
doi: 10.1126/science.1217416
Grahn, P. J. et al. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 92, 544–554 (2017).
pubmed: 28385196
doi: 10.1016/j.mayocp.2017.02.014
Angeli, C. A. et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379, 1244–1250 (2018).
pubmed: 30247091
doi: 10.1056/NEJMoa1803588
Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. https://doi.org/10.1038/s41591-018-0175-7 (2018).
Alam, M. et al. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. J. Neurosci. Methods 247, 50–57 (2015).
pubmed: 25791014
pmcid: 4465788
doi: 10.1016/j.jneumeth.2015.03.012
Lu, D. C. et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil. Neural Repair 30, 951–962 (2016).
pubmed: 27198185
pmcid: 5374120
doi: 10.1177/1545968316644344
Inanici, F., Brighton, L. N., Samejima, S., Hofstetter, C. P. & Moritz, C. T. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. https://doi.org/10.1109/TNSRE.2021.3049133 (2021).
Kapadia, N., Zivanovic, V. & Popovic, M. Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: pilot study. Top. Spinal Cord. Inj. Rehabil. 19, 279–287 (2013).
pubmed: 24244093
pmcid: 3816722
doi: 10.1310/sci1904-279
Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).
pubmed: 12838332
doi: 10.1038/nrn1137
Giszter, S. F. Motor primitives—new data and future questions. Curr. Opin. Neurobiol. 33, 156–165 (2015).
pubmed: 25912883
pmcid: 6524953
doi: 10.1016/j.conb.2015.04.004
Lemon, R. N. & Griffiths, J. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32, 261–279 (2005).
pubmed: 15806550
doi: 10.1002/mus.20333
Kinoshita, M. et al. Genetic dissection of the circuit for hand dexterity in primates. Nature 487, 235–238 (2012).
pubmed: 22722837
doi: 10.1038/nature11206
Weiler, J., Gribble, P. L. & Pruszynski, J. A. Spinal stretch reflexes support efficient hand control. Nat. Neurosci. 22, 529–533 (2019).
pubmed: 30742115
doi: 10.1038/s41593-019-0336-0
Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2020).
pubmed: 31875851
doi: 10.1038/s41586-019-1869-9
Capogrosso, M. et al. Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat. Protoc. https://doi.org/10.1038/s41596-018-0030-9 (2018).
Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).
pubmed: 27830790
pmcid: 5108412
doi: 10.1038/nature20118
Greiner, N. et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the primate cervical spinal cord. Nat. Commun. 12, 1–19 (2021).
doi: 10.1038/s41467-020-20703-1
Barra, B. et al. A versatile robotic platform for the design of natural, three-dimensional reaching and grasping tasks in monkeys. J. Neural Eng. https://doi.org/10.1088/1741-2552/ab4c77 (2019).
Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).
pubmed: 27830790
pmcid: 5108412
doi: 10.1038/nature20118
Schiavone, G. et al. Soft, implantable bioelectronic interfaces for translational research. Adv. Mater. 32, 1906512 (2020).
doi: 10.1002/adma.201906512
Chao, Z. C., Sawada, M., Isa, T. & Nishimura, Y. Dynamic reorganization of motor networks during recovery from partial spinal cord injury in monkeys. Cereb. Cortex https://doi.org/10.1093/cercor/bhy172 (2018).
Freund, P. et al. Nogo-A–specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat. Med. 12, 790–792 (2006).
pubmed: 16819551
doi: 10.1038/nm1436
Sharpe, A. N. & Jackson, A. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J. Neural Eng. 11, 016005 (2014).
pubmed: 24654267
pmcid: 4013994
doi: 10.1088/1741-2560/11/1/016005
Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).
pubmed: 28595054
pmcid: 6122849
doi: 10.1016/j.neuron.2017.05.025
Kato, K., Nishihara, Y. & Nishimura, Y. Stimulus outputs induced by subdural electrodes on the cervical spinal cord in monkeys. J. Neural Eng. 17, 016044 (2020).
pubmed: 32023224
doi: 10.1088/1741-2552/ab63a3
de Freitas, R. M. et al. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J. Appl. Physiol. 131, 746–759 (2021).
pubmed: 34138648
doi: 10.1152/japplphysiol.00132.2021
Kirsch, R. & Rymer, W. Neural compensation for muscular fatigue: evidence for significant force regulation in man. J. Neurophysiol. 57, 1893–1910 (1987).
pubmed: 3598635
doi: 10.1152/jn.1987.57.6.1893
Song, S. & Geyer, H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. https://doi.org/10.1113/JP270228 (2015).
doi: 10.1113/JP270228
pubmed: 26174421
pmcid: 4575581
Seáñez, I. & Capogrosso, M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron. Med. 7, 1–13 (2021).
doi: 10.1186/s42234-021-00077-5
Granat, M., Heller, B., Nicol, D., Baxendale, R. & Andrews, B. Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured person. J. Biomed. Eng. 15, 51–56 (1993).
pubmed: 8419682
doi: 10.1016/0141-5425(93)90093-E
Jenny, A. B. & Inukai, J. Principles of motor organization of the monkey cervical spinal cord. J. Neurosci. 3, 567–575 (1983).
pubmed: 6827309
pmcid: 6564558
doi: 10.1523/JNEUROSCI.03-03-00567.1983
National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals (National Academies Press (US), 1996).
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430
doi: 10.1038/s41593-018-0209-y
Toossi, A. et al. Effect of anesthesia on motor responses evoked by spinal neural prostheses during intraoperative procedures. J. Neural Eng. 16, 036003 (2019).
pubmed: 30790787
doi: 10.1088/1741-2552/ab0938
Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E. & Adler, C. H. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146, 159–170 (1997).
pubmed: 9225749
doi: 10.1006/exnr.1997.6507
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).
pubmed: 31907438
pmcid: 7007364
doi: 10.1038/s41593-019-0555-4
Raspopovic, S., Capogrosso, M. & Micera, S. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 333–344 (2011).
pubmed: 21693427
doi: 10.1109/TNSRE.2011.2151878