Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
07 2022
Historique:
received: 05 04 2021
accepted: 19 05 2022
pubmed: 1 7 2022
medline: 15 7 2022
entrez: 30 6 2022
Statut: ppublish

Résumé

Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts targeting specific spinal segments produced sustained arm movements, enabling monkeys with arm paralysis to perform an unconstrained reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that residual descending inputs were necessary to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.

Identifiants

pubmed: 35773543
doi: 10.1038/s41593-022-01106-5
pii: 10.1038/s41593-022-01106-5
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

924-934

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

ICCP. International Campaign for Cures of Spinal Cord Injury Paralysis. http://www.campaignforcure.org
Stroke Facts (National Center for Chronic Disease Prevention and Health Promotion, Division for Heart Disease and Stroke. Stroke facts, 2020); https://www.cdc.gov/stroke/facts.htm
Anderson, K. D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383 (2004).
pubmed: 15672628 doi: 10.1089/neu.2004.21.1371
Moreland, J. D. et al. Needs assessment of individuals with stroke after discharge from hospital stratified by acute Functional Independence Measure score. Disabil. Rehabil. 31, 2185–2195 (2009).
pubmed: 19903128 doi: 10.3109/09638280902951846
Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).
pubmed: 18558853 doi: 10.1146/annurev.neuro.31.060407.125547
Griffin, D. M. & Strick, P. L. The motor cortex uses active suppression to sculpt movement. Sci. Adv. 6, eabb8395 (2020).
pubmed: 32937371 pmcid: 7442473 doi: 10.1126/sciadv.abb8395
Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6, 1309–1316 (2003).
pubmed: 14625555 doi: 10.1038/nn1154
Lebedev, M. A. & Nicolelis, M. A. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017).
pubmed: 28275048 doi: 10.1152/physrev.00027.2016
Nishimura, Y., Perlmutter, S. I. & Fetz, E. E. Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front. Neural Circuits 7, 57 (2013).
pubmed: 23596396 pmcid: 3622884 doi: 10.3389/fncir.2013.00057
Shanechi, M. M., Hu, R. C. & Williams, Z. M. A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars. Nat. Commun. 5, 3237 (2014).
pubmed: 24549394 doi: 10.1038/ncomms4237
Zimmermann, J. B. & Jackson, A. Closed-loop control of spinal cord stimulation to restore hand function after paralysis. Front. Neurosci. 8, 87 (2014).
pubmed: 24904251 pmcid: 4032985 doi: 10.3389/fnins.2014.00087
Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 (2012).
pubmed: 22522928 pmcid: 3358575 doi: 10.1038/nature10987
Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature https://doi.org/10.1038/nature17435 (2016).
Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet https://doi.org/10.1016/S0140-6736(17)30601-3 (2017).
Giat, Y., Mizrahi, J. & Levy, M. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES. IEEE Trans. Biomed. Eng. 40, 664–674 (1993).
pubmed: 8244427 doi: 10.1109/10.237696
Edgerton, V. R. et al. Training locomotor networks. Brain Res. Rev. 57, 241–254 (2008).
pubmed: 18022244 doi: 10.1016/j.brainresrev.2007.09.002
Holinski, B. J. et al. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J. Neural Eng. 13, 056016 (2016).
pubmed: 27619069 pmcid: 5093020 doi: 10.1088/1741-2560/13/5/056016
Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).
pubmed: 24305828 pmcid: 6618777 doi: 10.1523/JNEUROSCI.1688-13.2013
Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).
pubmed: 30382196 pmcid: 6268129 doi: 10.1038/s41593-018-0262-6
Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).
pubmed: 30382197 doi: 10.1038/s41586-018-0649-2
Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).
pubmed: 24713270 pmcid: 3999714 doi: 10.1093/brain/awu038
Ichiyama, R. M., Gerasimenko, Y. P., Zhong, H., Roy, R. R. & Edgerton, V. R. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci. Lett. 383, 339–344 (2005).
pubmed: 15878636 doi: 10.1016/j.neulet.2005.04.049
Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).
pubmed: 19767747 pmcid: 2828944 doi: 10.1038/nn.2401
van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).
pubmed: 22654062 doi: 10.1126/science.1217416
Grahn, P. J. et al. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 92, 544–554 (2017).
pubmed: 28385196 doi: 10.1016/j.mayocp.2017.02.014
Angeli, C. A. et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379, 1244–1250 (2018).
pubmed: 30247091 doi: 10.1056/NEJMoa1803588
Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. https://doi.org/10.1038/s41591-018-0175-7 (2018).
Alam, M. et al. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. J. Neurosci. Methods 247, 50–57 (2015).
pubmed: 25791014 pmcid: 4465788 doi: 10.1016/j.jneumeth.2015.03.012
Lu, D. C. et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil. Neural Repair 30, 951–962 (2016).
pubmed: 27198185 pmcid: 5374120 doi: 10.1177/1545968316644344
Inanici, F., Brighton, L. N., Samejima, S., Hofstetter, C. P. & Moritz, C. T. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. https://doi.org/10.1109/TNSRE.2021.3049133 (2021).
Kapadia, N., Zivanovic, V. & Popovic, M. Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: pilot study. Top. Spinal Cord. Inj. Rehabil. 19, 279–287 (2013).
pubmed: 24244093 pmcid: 3816722 doi: 10.1310/sci1904-279
Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).
pubmed: 12838332 doi: 10.1038/nrn1137
Giszter, S. F. Motor primitives—new data and future questions. Curr. Opin. Neurobiol. 33, 156–165 (2015).
pubmed: 25912883 pmcid: 6524953 doi: 10.1016/j.conb.2015.04.004
Lemon, R. N. & Griffiths, J. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32, 261–279 (2005).
pubmed: 15806550 doi: 10.1002/mus.20333
Kinoshita, M. et al. Genetic dissection of the circuit for hand dexterity in primates. Nature 487, 235–238 (2012).
pubmed: 22722837 doi: 10.1038/nature11206
Weiler, J., Gribble, P. L. & Pruszynski, J. A. Spinal stretch reflexes support efficient hand control. Nat. Neurosci. 22, 529–533 (2019).
pubmed: 30742115 doi: 10.1038/s41593-019-0336-0
Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2020).
pubmed: 31875851 doi: 10.1038/s41586-019-1869-9
Capogrosso, M. et al. Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat. Protoc. https://doi.org/10.1038/s41596-018-0030-9 (2018).
Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).
pubmed: 27830790 pmcid: 5108412 doi: 10.1038/nature20118
Greiner, N. et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the primate cervical spinal cord. Nat. Commun. 12, 1–19 (2021).
doi: 10.1038/s41467-020-20703-1
Barra, B. et al. A versatile robotic platform for the design of natural, three-dimensional reaching and grasping tasks in monkeys. J. Neural Eng. https://doi.org/10.1088/1741-2552/ab4c77 (2019).
Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).
pubmed: 27830790 pmcid: 5108412 doi: 10.1038/nature20118
Schiavone, G. et al. Soft, implantable bioelectronic interfaces for translational research. Adv. Mater. 32, 1906512 (2020).
doi: 10.1002/adma.201906512
Chao, Z. C., Sawada, M., Isa, T. & Nishimura, Y. Dynamic reorganization of motor networks during recovery from partial spinal cord injury in monkeys. Cereb. Cortex https://doi.org/10.1093/cercor/bhy172 (2018).
Freund, P. et al. Nogo-A–specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat. Med. 12, 790–792 (2006).
pubmed: 16819551 doi: 10.1038/nm1436
Sharpe, A. N. & Jackson, A. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J. Neural Eng. 11, 016005 (2014).
pubmed: 24654267 pmcid: 4013994 doi: 10.1088/1741-2560/11/1/016005
Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).
pubmed: 28595054 pmcid: 6122849 doi: 10.1016/j.neuron.2017.05.025
Kato, K., Nishihara, Y. & Nishimura, Y. Stimulus outputs induced by subdural electrodes on the cervical spinal cord in monkeys. J. Neural Eng. 17, 016044 (2020).
pubmed: 32023224 doi: 10.1088/1741-2552/ab63a3
de Freitas, R. M. et al. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J. Appl. Physiol. 131, 746–759 (2021).
pubmed: 34138648 doi: 10.1152/japplphysiol.00132.2021
Kirsch, R. & Rymer, W. Neural compensation for muscular fatigue: evidence for significant force regulation in man. J. Neurophysiol. 57, 1893–1910 (1987).
pubmed: 3598635 doi: 10.1152/jn.1987.57.6.1893
Song, S. & Geyer, H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. https://doi.org/10.1113/JP270228 (2015).
doi: 10.1113/JP270228 pubmed: 26174421 pmcid: 4575581
Seáñez, I. & Capogrosso, M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron. Med. 7, 1–13 (2021).
doi: 10.1186/s42234-021-00077-5
Granat, M., Heller, B., Nicol, D., Baxendale, R. & Andrews, B. Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured person. J. Biomed. Eng. 15, 51–56 (1993).
pubmed: 8419682 doi: 10.1016/0141-5425(93)90093-E
Jenny, A. B. & Inukai, J. Principles of motor organization of the monkey cervical spinal cord. J. Neurosci. 3, 567–575 (1983).
pubmed: 6827309 pmcid: 6564558 doi: 10.1523/JNEUROSCI.03-03-00567.1983
National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals (National Academies Press (US), 1996).
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430 doi: 10.1038/s41593-018-0209-y
Toossi, A. et al. Effect of anesthesia on motor responses evoked by spinal neural prostheses during intraoperative procedures. J. Neural Eng. 16, 036003 (2019).
pubmed: 30790787 doi: 10.1088/1741-2552/ab0938
Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E. & Adler, C. H. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146, 159–170 (1997).
pubmed: 9225749 doi: 10.1006/exnr.1997.6507
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).
pubmed: 31907438 pmcid: 7007364 doi: 10.1038/s41593-019-0555-4
Raspopovic, S., Capogrosso, M. & Micera, S. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 333–344 (2011).
pubmed: 21693427 doi: 10.1109/TNSRE.2011.2151878

Auteurs

Beatrice Barra (B)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.

Sara Conti (S)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.

Matthew G Perich (MG)

Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Katie Zhuang (K)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.

Giuseppe Schiavone (G)

Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.

Florian Fallegger (F)

Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.

Katia Galan (K)

Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Nicholas D James (ND)

Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Quentin Barraud (Q)

Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Maude Delacombaz (M)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Mélanie Kaeser (M)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.

Eric M Rouiller (EM)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.

Tomislav Milekovic (T)

Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Stephanie Lacour (S)

Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.

Jocelyne Bloch (J)

Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Department of Neurosurgery, CHUV, Lausanne, Switzerland.

Grégoire Courtine (G)

Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Department of Neurosurgery, CHUV, Lausanne, Switzerland.

Marco Capogrosso (M)

Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland. mcapo@pitt.edu.
Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA. mcapo@pitt.edu.
Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA. mcapo@pitt.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH