Interrelationship among thigh intermuscular adipose tissue, cross-sectional area, muscle strength, and functional mobility in older subjects.


Journal

Medicine
ISSN: 1536-5964
Titre abrégé: Medicine (Baltimore)
Pays: United States
ID NLM: 2985248R

Informations de publication

Date de publication:
01 Jul 2022
Historique:
entrez: 1 7 2022
pubmed: 2 7 2022
medline: 7 7 2022
Statut: epublish

Résumé

The aim of this cross-sectional study was to investigate the association between lower limb strength, muscle mass and composition, and balance ability in elders. Thirthy-four older participants (Age: 65.6 ± 4.73 years; male = 10 and female = 24) were assessed for muscle strength (maximal isometric strength of knee extensors and one repetition maximum by leg press, the one repetition maximum [1RM]), balance and gait capacity (Mini-BESTest), body composition by whole-body dual energy x-ray absorptiometry (obtaining Appendicular Skeletal Muscle Mass Index, ASMMI), and magnetic resonance imaging of thigh to evaluate Intermuscular Adipose Tissue (IMAT) and muscle Cross Sectional Area (CSA). Positive correlations between 1RM and ASMMI (rs = 0.64, P < .0001) and thigh CSA (rs = 0.52, P = .0017), but not with thigh IMAT, were found. In addition, significant correlations between knee extensors strength and ASMMI (rs = 0.48, P = .004) and thigh CSA (rs = 0.49, P = .0033) and IMAT (rs = -0.35, P = .043) were observed, whereas no significant correlations between the Mini-BESTest with ASMMI, thigh CSA, and IMAT were observed. Lower limb strength positively correlated with appendicular muscle mass. Further, the maximal isometric strength of knee extensors negatively correlated with thigh IMAT in elderly patients, whereas the dynamic balance ability did not correlate with any of the morphological variables of the muscle (i.e., ASMMI, CSA, and IMAT). A reduced muscle size and strength could affect movement and reduce physical function in older patients. Improving the composition and size of muscle in elder subjects could reduce frailty and risk of falls.

Identifiants

pubmed: 35777009
doi: 10.1097/MD.0000000000029744
pii: 00005792-202207010-00026
pmc: PMC9239645
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e29744

Informations de copyright

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

Déclaration de conflit d'intérêts

The authors have no conflicts of interest to disclose.

Références

Salazar-Barajas ME, Crespo ML, Cortez PLH, et al. Factors contributing to active aging in older adults, from the framework of Roy’s adaptation model. Investig y Educ en Enferm. 2018;36:2. doi:10.17533/udea.iee.v36n2e08
doi: 10.17533/udea.iee.v36n2e08
Rudnicka E, Napierała P, Podfigurna A, et al. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020;139:6–11. doi:10.1016/j.maturitas.2020.05.018
doi: 10.1016/j.maturitas.2020.05.018
Marsman D, Belsky DW, Gregori D, et al. Healthy ageing: the natural consequences of good nutrition—a conference report. Eur J Nutr. 2018;57(Suppl 2):15–34. doi:10.1007/s00394-018-1723-0
doi: 10.1007/s00394-018-1723-0
Owusu-Addo E, Ofori-Asenso R, Batchelor F, et al. Effective implementation approaches for healthy ageing interventions for older people: a rapid review. Arch Gerontol Geriatr. 2021;92:104263. doi:10.1016/j.archger.2020.104263
doi: 10.1016/j.archger.2020.104263
Akbari M, Mousavikhatir R. Changes in the muscle strength and functional performance of healthy women with aging. Med J Islam Repub Iran. 2012;26:125–31.
Messina C, Vitale JA, Pedone L, et al. Critical appraisal of papers reporting recommendation on sarcopenia using the AGREE II tool: a EuroAIM initiative. Eur J Clin Nutr. 2020;74:1164–72. doi:10.1038/s41430-020-0638-z
doi: 10.1038/s41430-020-0638-z
Franco I, Johansson A, Olsson K, et al. Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat Commun. 2018;9:800. doi:10.1038/s41467-018-03244-6
doi: 10.1038/s41467-018-03244-6
Vitale JA, Bonato M, La Torre A, et al. The role of the molecular clock in promoting skeletal muscle growth and protecting against sarcopenia. 2019;20:4318. Int J Mol Sci. doi:10.3390/ijms20174318
doi: 10.3390/ijms20174318
Vitale JA, Sansoni V, Faraldi M, et al. Circulating carboxylated osteocalcin correlates with skeletal muscle mass and risk of fall in postmenopausal osteoporotic women. Front Endocrinol (Lausanne). 2021;12:669704. doi:10.3389/fendo.2021.669704
doi: 10.3389/fendo.2021.669704
Patel HP, Syddall HE, Jameson K, et al. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS). Age Ageing. 2013;42:378–84. doi:10.1093/ageing/afs197
Kamel HK. Sarcopenia and aging [Published online 2003]. Nutr Rev. doi:10.1301/nr.2003.may.157–167.
doi: 10.1301/nr.2003.may.157
Moreland JD, Richardson JA, Goldsmith CH, et al. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52:1121–9. doi:10.1111/j.1532-5415.2004.52310.x
doi: 10.1111/j.1532-5415.2004.52310.x
Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. Journals Gerontol - Ser A Biol Sci Med Sci. 2005;60:324–33. doi:10.1093/gerona/60.3.324
doi: 10.1093/gerona/60.3.324
Sternfeld B, Ngo L, Satariano WA, et al. Associations of body composition with physical performance and self-reported functional limitation in elderly men and women. Am J Epidemiol. 2002;156:110–21. doi:10.1093/aje/kwf023
doi: 10.1093/aje/kwf023
Visser M, Kritchevsky SB, Goodpaster BH, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc. 2002;50:897–904. doi:10.1046/j.1532-5415.2002.50217.x
doi: 10.1046/j.1532-5415.2002.50217.x
Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96. doi:10.1046/j.1532-5415.2002.50216.x
doi: 10.1046/j.1532-5415.2002.50216.x
Landers KA, Hunter GR, Wetzstein CJ, et al. The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. J Gerontol - Ser A Biol Sci Med Sci. 2001;56:B443–8. doi:10.1093/gerona/56.10.B443
doi: 10.1093/gerona/56.10.B443
Addison O, Marcus RL, Lastayo PC, et al. Intermuscular fat: a review of the consequences and causes [Published online 2014]. Int J Endocrinol. doi:10.1155/2014/309570
doi: 10.1155/2014/309570
Lanza MB, Ryan AS, Gray V, et al. Intramuscular fat influences neuromuscular activation of the gluteus medius in older adults. Front Physiol. 2020;11:614415. doi:10.3389/fphys.2020.614415
doi: 10.3389/fphys.2020.614415
Marcus RL, Addison O, Dibble LE, et al. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res. 2012;2012:629637. doi:10.1155/2012/629637
doi: 10.1155/2012/629637
Vitale JA, Messina C, Albano D, et al. Appendicular muscle mass, thigh intermuscular fat infiltration, and risk of fall in postmenopausal osteoporotic elder women. Gerontology. 2021;67:415–24. doi:10.1159/000513597
doi: 10.1159/000513597
Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular adipose tissue is muscle specific and associated with poor functional performance [Published online 2012]. J Aging Res. 2012;2012:172957. doi:10.1155/2012/172957
doi: 10.1155/2012/172957
Marcus RL, Addison O, Lastayo PC. Intramuscular adipose tissue attenuates gains in muscle quality in older adults at high risk for falling. A brief report. J Nutr Heal Aging. 2013;17:215–8. doi:10.1007/s12603-012-0377-5
doi: 10.1007/s12603-012-0377-5
Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol. 2001;90:2157–65. doi:10.1152/jappl.2001.90.6.2157
doi: 10.1152/jappl.2001.90.6.2157
Addison O, Young P, Inacio M, et al. Hip but not thigh intramuscular adipose tissue is associated with poor balance and increased temporal gait variability in older adults. Curr Aging Sci. 2001;90:2157–65. doi:10.2174/1874609807666140706150924
doi: 10.2174/1874609807666140706150924
Kristinsdottir EK, Fransson PA, Magnusson M. Changes in postural control in healthy elderly subjects are related to vibration sensation, vision and vestibular asymmetry. Acta Otolaryngol. 2001;121:700–6. doi:10.1080/00016480152583647
doi: 10.1080/00016480152583647
Johnson C, Hallemans A, Verbecque E, et al. Aging and the relationship between balance performance, vestibular function and somatosensory thresholds. J Int Adv Otol. 2020;16:328–s37. doi:10.5152/iao.2020.8287
doi: 10.5152/iao.2020.8287
von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7. doi:10.1016/S0140-6736(07)61602-X
doi: 10.1016/S0140-6736(07)61602-X
Franchignoni F, Horak F, Godi M, et al. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J Rehabil Med. 2010;42:323–31. doi:10.2340/16501977-0537
doi: 10.2340/16501977-0537
Messina C, Maffi G, Vitale JA, et al. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg. 2018;8:86–99. doi:10.21037/qims.2018.01.01
doi: 10.21037/qims.2018.01.01
Albano D, Messina C, Vitale J, et al. Imaging of sarcopenia: old evidence and new insights. Eur Radiol. 2020;30:2199–208. doi:10.1007/s00330-019-06573-2
doi: 10.1007/s00330-019-06573-2
Sergi G, Trevisan C, Veronese N, et al. Imaging of sarcopenia. Eur J Radiol. 2016;85:1519–24. doi:10.1016/j.ejrad.2016.04.009
doi: 10.1016/j.ejrad.2016.04.009
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi:10.1093/ageing/afy169
doi: 10.1093/ageing/afy169
Grimm A, Meyer H, Nickel MD, et al. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification. Eur J Radiol. 2018;103:57–64. doi:10.1016/j.ejrad.2018.04.011
doi: 10.1016/j.ejrad.2018.04.011
Grimm A, Meyer H, Nickel MD, et al. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh. J Cachexia Sarcopenia Muscle. 2018;9:1093100. doi:10.1002/jcsm.12343
doi: 10.1002/jcsm.12343
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. doi:10.1038/nmeth.2089
doi: 10.1038/nmeth.2089
Hamre C, Botolfsen P, Tangen GG, et al. Interrater and test-retest reliability and validity of the Norwegian version of the BESTest and mini-BESTest in people with increased risk of falling. BMC Geriatr. 2017;17:92. doi:10.1186/s12877-017-0480-x
doi: 10.1186/s12877-017-0480-x
Seo D-I, Kim E, Fahs CA, et al. Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med. 2012;11:221–5.
Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24:69–71.
Kim S, Leng XI, Kritchevsky SB. Body composition and physical function in older adults with various comorbidities. Innov Aging. 2017;1:igx008. doi:10.1093/geroni/igx008
doi: 10.1093/geroni/igx008
Chen L, Nelson DR, Zhao Y, et al. Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. BMC Geriatr. 2013;13:74. doi:10.1186/1471-2318-13-74
doi: 10.1186/1471-2318-13-74
Beliaeff S, Bouchard DR, Hautier C, et al. Association between muscle mass and isometric muscle strength in well-functioning older men and women. J Aging Phys Act. 2008;16:484–93. doi:10.1123/japa.16.4.484
doi: 10.1123/japa.16.4.484
Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–32. doi:10.1016/j.arr.2018.07.005
doi: 10.1016/j.arr.2018.07.005
Gonnelli S, Caffarelli C, Cappelli S, et al. Gender-specific associations of appendicular muscle mass with BMD in Elderly Italian subjects. Calcif Tissue Int. 2014;95:340–8. doi:10.1007/s00223-014-9902-3
doi: 10.1007/s00223-014-9902-3
Makizako H, Shimada H, Doi T, et al. Age-dependent changes in physical performance and body composition in community-dwelling Japanese older adults. J Cachexia Sarcopenia Muscle. 2017;8:607–14. doi:10.1002/jcsm.12197
doi: 10.1002/jcsm.12197
Granic A, Sayer AA, Robinson SM. Dietary patterns, skeletal muscle health, and sarcopenia in older adults. Nutrients. 2019;11:745. doi:10.3390/nu11040745
doi: 10.3390/nu11040745
Anton S, Hida A, Mankowski R, et al. Nutrition and exercise in Sarcopenia. Curr Protein Pept Sci. 19(7):649–67. doi:10.2174/1389203717666161227144349
doi: 10.2174/1389203717666161227144349
Gouveia ÉR, Ihle A, Gouveia BR, et al. Muscle mass and muscle strength relationships to balance: the role of age and physical activity. J Aging Phys Act. 2020;28:262–68. doi:10.1123/JAPA.2018-0113
doi: 10.1123/JAPA.2018-0113
Bijlsma AY, Pasma JH, Lambers D, et al. Muscle strength rather than muscle mass is associated with standing balance in Elderly outpatients. J Am Med Dir Assoc. 2013;14:493–8. doi:10.1016/j.jamda.2013.02.001
doi: 10.1016/j.jamda.2013.02.001
Hairi NN, Cumming RG, Naganathan V, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: The concord health and ageing in men project. J Am Geriatr Soc. 2011;58:2055–62. doi:10.1111/j.1532-5415.2010.03145.x
doi: 10.1111/j.1532-5415.2010.03145.x
Magnani PE, Genovez MB, Porto JM, et al. Use of the BESTest and the Mini-BESTest for fall risk prediction in community-dwelling older adults between 60 and 102 years of age. J Geriatr Phys Ther. 2020;43:179–84. doi:10.1519/JPT.0000000000000236
doi: 10.1519/JPT.0000000000000236
Jeon MY, Gu MO, Yim JE. Comparison of walking, muscle strength, balance, and fear of falling between repeated fall group, one-time fall group, and nonfall group of the elderly receiving home care service. Asian Nurs Res (Korean Soc Nurs Sci). 2017;11:290–96. doi:10.1016/j.anr.2017.11.003
doi: 10.1016/j.anr.2017.11.003
Aguirre LE, Villareal DT. Physical exercise as therapy for frailty. Nestle Nutr Inst Workshop Ser. 2015;83:83–92. doi:10.1159/000382065
doi: 10.1159/000382065
Deley G, Kervio G, Van Hoecke J, et al. Effects of a one-year exercise training program in adults over 70 years old: a study with a control group. Aging Clin Exp Res. 2007;19:310–5. doi:10.1007/BF03324707
doi: 10.1007/BF03324707
del Campo Cervantes JM, Macías Cervantes MH, Monroy Torres R. Effect of a resistance training program on Sarcopenia and functionality of the older adults living in a nursing home. J Nutr Heal Aging. 23:829–36. doi:10.1007/s12603-019-1261-3
doi: 10.1007/s12603-019-1261-3
Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behavior. Br J Sports Med. 2020;54:1451–62. doi:10.1136/bjsports-2020-102955
doi: 10.1136/bjsports-2020-102955
Vitale JA, Bonato M, Borghi S, et al. Home-based resistance training for older subjects during the COVID-19 outbreak in Italy: preliminary results of a six-months RCT. Int J Environ Res Public Health. 2020;17:9533.

Auteurs

Stefano Borghi (S)

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.

Matteo Bonato (M)

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Antonio La Torre (A)

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Giuseppe Banfi (G)

IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
Vita-Salute San Raffaele University, Milan, Italy.

Jacopo Antonino Vitale (JA)

IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH