Emerging strategies for the improvement of chemotherapy in bladder cancer: Current knowledge and future perspectives.


Journal

Journal of advanced research
ISSN: 2090-1224
Titre abrégé: J Adv Res
Pays: Egypt
ID NLM: 101546952

Informations de publication

Date de publication:
07 2022
Historique:
received: 06 09 2021
revised: 01 11 2021
accepted: 19 11 2021
entrez: 1 7 2022
pubmed: 2 7 2022
medline: 8 7 2022
Statut: ppublish

Résumé

Chemotherapy is a first-line treatment for advanced and metastatic bladder cancer, but the unsatisfactory objective response rate to this treatment yields poor 5-year patient survival. Only PD-1/PD-L1-based immune checkpoint inhibitors, FGFR3 inhibitors and antibody-drug conjugates are approved by the FDA to be used in bladder cancer, mainly for platinum-refractory or platinum-ineligible locally advanced or metastatic urothelial carcinoma. Emerging studies indicate that the combination of targeted therapy and chemotherapy shows better efficacy than targeted therapy or chemotherapy alone. Newly identified targets in cancer cells and various functions of the tumour microenvironment have spawned novel agents and regimens, which give impetus to sensitizing chemotherapy in the bladder cancer setting. This review aims to present the current evidence for potentiating the efficacy of chemotherapy in bladder cancer. We focus on combining chemotherapy with other treatments as follows: targeted therapy, including immunotherapy and antibody-drug conjugates in clinic; novel targeted drugs and nanoparticles in preclinical models and potential targets that may contribute to chemosensitivity in future clinical practice. The prospect of precision therapy is also discussed in bladder cancer. Combining chemotherapy drugs with immune checkpoint inhibitors, antibody-drug conjugates and VEGF inhibitors potentially elevates the response rate and survival. Novel targets, including cancer stem cells, DNA damage repair, antiapoptosis, drug metabolism and the tumour microenvironment, contribute to chemosensitization. Gene alteration-based drug selection and patient-derived xenograft- and organoid-based drug validation are the future for precision therapy.

Sections du résumé

BACKGROUND
Chemotherapy is a first-line treatment for advanced and metastatic bladder cancer, but the unsatisfactory objective response rate to this treatment yields poor 5-year patient survival. Only PD-1/PD-L1-based immune checkpoint inhibitors, FGFR3 inhibitors and antibody-drug conjugates are approved by the FDA to be used in bladder cancer, mainly for platinum-refractory or platinum-ineligible locally advanced or metastatic urothelial carcinoma. Emerging studies indicate that the combination of targeted therapy and chemotherapy shows better efficacy than targeted therapy or chemotherapy alone. Newly identified targets in cancer cells and various functions of the tumour microenvironment have spawned novel agents and regimens, which give impetus to sensitizing chemotherapy in the bladder cancer setting.
AIM OF REVIEW
This review aims to present the current evidence for potentiating the efficacy of chemotherapy in bladder cancer. We focus on combining chemotherapy with other treatments as follows: targeted therapy, including immunotherapy and antibody-drug conjugates in clinic; novel targeted drugs and nanoparticles in preclinical models and potential targets that may contribute to chemosensitivity in future clinical practice. The prospect of precision therapy is also discussed in bladder cancer.
KEY SCIENTIFIC CONCEPTS OF REVIEW
Combining chemotherapy drugs with immune checkpoint inhibitors, antibody-drug conjugates and VEGF inhibitors potentially elevates the response rate and survival. Novel targets, including cancer stem cells, DNA damage repair, antiapoptosis, drug metabolism and the tumour microenvironment, contribute to chemosensitization. Gene alteration-based drug selection and patient-derived xenograft- and organoid-based drug validation are the future for precision therapy.

Identifiants

pubmed: 35777908
pii: S2090-1232(21)00229-0
doi: 10.1016/j.jare.2021.11.010
pmc: PMC9263750
pii:
doi:

Substances chimiques

Immune Checkpoint Inhibitors 0
Immunoconjugates 0
Platinum 49DFR088MY

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

187-202

Informations de copyright

Copyright © 2022. Production and hosting by Elsevier B.V.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Cancers (Basel). 2021 Sep 21;13(18):
pubmed: 34572939
Nat Commun. 2020 Oct 30;11(1):5485
pubmed: 33127883
Nat Commun. 2020 Oct 8;11(1):5077
pubmed: 33033240
Lancet Oncol. 2007 Jun;8(6):500-12
pubmed: 17513173
Eur Urol. 2018 May;73(5):751-759
pubmed: 29248319
PLoS One. 2015 Nov 23;10(11):e0143441
pubmed: 26599571
Clin Cancer Res. 2019 Feb 15;25(4):1389-1403
pubmed: 30397178
Sci Rep. 2019 Mar 29;9(1):5337
pubmed: 30926903
Lancet Oncol. 2020 Dec;21(12):1574-1588
pubmed: 32971005
Biochem J. 2011 Jul 15;437(2):199-213
pubmed: 21711248
Pharmacol Res. 2020 Feb;152:104575
pubmed: 31805343
Prog Lipid Res. 2004 Jan;43(1):55-90
pubmed: 14636671
Genome Med. 2020 May 27;12(1):47
pubmed: 32460812
Nat Rev Clin Oncol. 2018 Aug;15(8):495-509
pubmed: 29720713
J Cell Mol Med. 2017 Jul;21(7):1266-1279
pubmed: 27862976
Nat Rev Mol Cell Biol. 2014 Jul;15(7):465-81
pubmed: 24954209
J Exp Clin Cancer Res. 2021 Jun 21;40(1):203
pubmed: 34154613
Nat Rev Clin Oncol. 2021 Aug;18(8):506-525
pubmed: 33864051
Cell Oncol (Dordr). 2021 Feb;44(1):45-59
pubmed: 33423167
Lancet Oncol. 2021 Feb;22(2):198-211
pubmed: 33476593
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4567-4574
pubmed: 30787188
Cell. 2018 Apr 5;173(2):515-528.e17
pubmed: 29625057
Cancer. 2017 Jun 1;123(11):1912-1924
pubmed: 28323334
Mol Cancer. 2021 Apr 19;20(1):70
pubmed: 33874956
JAMA. 2019 Aug 27;322(8):764-774
pubmed: 31454018
Lancet. 2018 Feb 24;391(10122):748-757
pubmed: 29268948
Curr Pharm Des. 2019;25(4):371-373
pubmed: 31215365
Transl Androl Urol. 2017 Dec;6(6):1067-1080
pubmed: 29354494
Adv Sci (Weinh). 2018 Mar 27;5(6):1800004
pubmed: 29938183
Med Sci Monit. 2019 Feb 19;25:1323-1335
pubmed: 30778022
Oncotarget. 2016 Nov 22;7(47):76374-76389
pubmed: 27823983
Am J Physiol Cell Physiol. 2007 Mar;292(3):C996-1012
pubmed: 16987999
Clin Cancer Res. 2019 Feb 1;25(3):977-988
pubmed: 29980530
J Exp Clin Cancer Res. 2019 Jun 24;38(1):275
pubmed: 31234917
Clin Cancer Res. 2003 Nov 15;9(15):5642-51
pubmed: 14654547
Theranostics. 2021 Mar 4;11(10):4809-4824
pubmed: 33754029
EMBO Rep. 2020 Apr 3;21(4):e48467
pubmed: 32052578
Eur Urol. 2016 May;69(5):855-62
pubmed: 26343003
J Cancer. 2019 Jun 2;10(12):2628-2634
pubmed: 31258770
Cancer Res. 2020 Apr 15;80(8):1707-1719
pubmed: 32060149
Oncol Lett. 2017 Jan;13(1):435-440
pubmed: 28123579
Int J Cancer. 2012 Jun 1;130(11):2526-38
pubmed: 21702042
CA Cancer J Clin. 2021 May;71(3):209-249
pubmed: 33538338
Lancet. 2003 Jun 7;361(9373):1927-34
pubmed: 12801735
Oncogene. 2019 Jul;38(27):5425-5439
pubmed: 30918330
J Exp Clin Cancer Res. 2016 Jan 06;35:2
pubmed: 26733306
J Control Release. 2017 Aug 10;259:136-148
pubmed: 28062300
Mol Cancer Ther. 2016 Jun;15(6):1301-10
pubmed: 26944921
Ann Oncol. 2019 Sep 1;30(9):1437-1447
pubmed: 31218365
Clin Epigenetics. 2021 Apr 26;13(1):91
pubmed: 33902700
Oncology. 2005;69(1):63-70
pubmed: 16088234
J Clin Oncol. 2011 Apr 20;29(12):1525-30
pubmed: 21422406
J Natl Cancer Inst. 2015 Sep 14;107(11):
pubmed: 26374428
Clin Cancer Res. 2021 Apr 1;27(7):1882-1892
pubmed: 33472913
Urology. 2008 Jun;71(6):1220-5
pubmed: 18538698
Front Oncol. 2018 Oct 02;8:400
pubmed: 30333957
Future Oncol. 2008 Feb;4(1):71-83
pubmed: 18241002
J Clin Invest. 2020 Dec 1;130(12):6278-6289
pubmed: 32817589
Int J Mol Med. 2018 Mar;41(3):1765-1773
pubmed: 29328435
Anticancer Res. 2001 Jan-Feb;21(1B):575-8
pubmed: 11299807
Oncol Rep. 2013 Mar;29(3):1053-60
pubmed: 23314229
Cancer Treat Rev. 2021 Jun;97:102187
pubmed: 33839438
Clin Cancer Res. 2021 Feb 15;27(4):922-927
pubmed: 32962979
J Biol Chem. 2007 Oct 5;282(40):29273-83
pubmed: 17675670
Nat Med. 2011 Mar;17(3):313-9
pubmed: 21386835
J Urol. 2015 Oct;194(4):1120-31
pubmed: 26047983
J Exp Clin Cancer Res. 2017 Jan 3;36(1):1
pubmed: 28049532
J Natl Compr Canc Netw. 2020 Mar;18(3):329-354
pubmed: 32135513
Hematol Oncol Clin North Am. 2015 Apr;29(2):205-18, vii
pubmed: 25836929
Cancer Biol Med. 2020 Aug 15;17(3):676-692
pubmed: 32944399
Cell. 2020 Mar 19;180(6):1081-1097.e24
pubmed: 32142650
Sci Rep. 2015 Feb 06;5:8293
pubmed: 25656485
Mol Cancer. 2014 Jan 15;13:8
pubmed: 24423412
J Clin Oncol. 2020 Apr 1;38(10):1041-1049
pubmed: 32031899
Int Urol Nephrol. 2018 Oct;50(10):1811-1819
pubmed: 30117016
Cancers (Basel). 2020 Oct 06;12(10):
pubmed: 33036162
Cell Death Dis. 2019 May 10;10(5):375
pubmed: 31076571
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13646-51
pubmed: 16950874
Cancer. 2010 Jul 1;116(13):3294-303
pubmed: 20564622
Int J Nanomedicine. 2018 Nov 19;13:7623-7631
pubmed: 30538447
Int J Cancer. 2012 Aug 15;131(4):987-96
pubmed: 21964864
Cell Death Dis. 2018 Jan 22;9(2):72
pubmed: 29358577
Mutat Res. 2013 Mar-Apr;743-744:53-66
pubmed: 23391514
J Am Chem Soc. 2017 Sep 20;139(37):12923-12926
pubmed: 28870078
Am J Cancer Res. 2015 Sep 15;5(10):2959-68
pubmed: 26693052
Pharmacol Ther. 2021 May;221:107753
pubmed: 33259885
J Clin Oncol. 2011 Nov 10;29(32):4320-6
pubmed: 21990410
Lancet Oncol. 2021 Jul;22(7):931-945
pubmed: 34051178
Annu Rev Pharmacol Toxicol. 2013;53:37-58
pubmed: 23020295
Eur Urol. 2015 Feb;67(2):241-9
pubmed: 25257030
Trends Biotechnol. 2020 Jun;38(6):579-583
pubmed: 31926600
Lancet Oncol. 2020 Jan;21(1):105-120
pubmed: 31753727
Mol Cancer Ther. 2018 Feb;17(2):474-483
pubmed: 29284644
Pharmacol Rev. 2018 Jan;70(1):1-11
pubmed: 29196555
Curr Oncol. 2011 Jan;18(1):e25-34
pubmed: 21331269
J Clin Oncol. 2005 Jul 20;23(21):4602-8
pubmed: 16034041
Cancer Immunol Immunother. 2021 May;70(5):1419-1433
pubmed: 33156394
J Clin Oncol. 2021 Aug 1;39(22):2474-2485
pubmed: 33929895
Mol Cancer Ther. 2020 Aug;19(8):1623-1635
pubmed: 32430484
Cancer Res. 2006 Oct 1;66(19):9339-44
pubmed: 16990346
Nat Rev Cancer. 2021 Feb;21(2):104-121
pubmed: 33268841
J Clin Oncol. 2019 Jul 1;37(19):1608-1616
pubmed: 31100038
BMC Cancer. 2021 May 24;21(1):593
pubmed: 34030643
Nanomedicine (Lond). 2021 Feb;16(4):261-264
pubmed: 33543644
BJU Int. 2017 Mar;119(3):371-380
pubmed: 28058776
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):E4726-35
pubmed: 25339441
Cancer Treat Rev. 2019 Jun;76:10-21
pubmed: 31030123
Cell Biochem Biophys. 2015 Sep;73(1):65-9
pubmed: 27352265
World J Urol. 2006 Aug;24(3):338-44
pubmed: 16832651
Eur Urol. 2015 Dec;68(6):959-67
pubmed: 26238431
Clin Cancer Res. 2017 Jan 15;23(2):503-513
pubmed: 27435393
N Engl J Med. 2017 Mar 16;376(11):1015-1026
pubmed: 28212060
Lancet. 2020 May 16;395(10236):1547-1557
pubmed: 32416780
Br J Cancer. 2019 Dec;121(12):1027-1038
pubmed: 31673101
Cancer Chemother Pharmacol. 2017 Jan;79(1):49-55
pubmed: 27878359
J Natl Compr Canc Netw. 2018 Sep;16(9):1041-1053
pubmed: 30181416
Cancer Treat Rev. 2020 Jun;86:102000
pubmed: 32203842
Nature. 2015 Jan 8;517(7533):209-13
pubmed: 25470039
Postgrad Med J. 2002 Oct;78(924):584-9
pubmed: 12415079
Cancer Lett. 2021 May 1;505:13-23
pubmed: 33610730
J Urol. 2015 Mar;193(3):1016-22
pubmed: 25229559
J Clin Oncol. 2017 Jul 1;35(19):2117-2124
pubmed: 28375787
Cancer Treat Rev. 2021 Jul;98:102223
pubmed: 34049187
Biochem J. 2003 Jan 1;369(Pt 1):1-15
pubmed: 12396231
Mol Cancer Ther. 2019 Apr;18(4):801-811
pubmed: 30787175
ACS Nano. 2019 Aug 27;13(8):8505-8511
pubmed: 31329427
Cell Physiol Biochem. 2018;48(1):87-98
pubmed: 30001529
Nat Med. 2007 Mar;13(3):348-53
pubmed: 17334372
Eur Urol. 2005 Aug;48(2):202-5; discussion 205-6
pubmed: 15939524
Cancer. 2014 Sep 1;120(17):2684-93
pubmed: 24802654
Theranostics. 2017 Oct 17;7(19):4777-4790
pubmed: 29187903
Nat Med. 2007 Jun;13(6):688-94
pubmed: 17486089
JAMA. 2020 Nov 17;324(19):1980-1991
pubmed: 33201207
J Control Release. 2015 Nov 10;217:27-41
pubmed: 26285063
Cell Physiol Biochem. 2017;41(3):921-932
pubmed: 28222430
J Clin Transl Res. 2021 Jul 30;7(4):485-500
pubmed: 34541363
ACS Nano. 2020 Jul 28;14(7):8135-8148
pubmed: 32479062
Clin Cancer Res. 2019 Feb 1;25(3):1070-1086
pubmed: 30397177
Science. 1956 Feb 24;123(3191):309-14
pubmed: 13298683
J Control Release. 2014 May 28;182:90-6
pubmed: 24637468
Mol Oncol. 2019 Jul;13(7):1559-1576
pubmed: 31131537

Auteurs

Sen Liu (S)

Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

Xu Chen (X)

Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Urological Diseases, China. Electronic address: chenx457@mail.sysu.edu.cn.

Tianxin Lin (T)

Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Urological Diseases, China. Electronic address: lintx@mail.sysu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH