Gut microbiota and host Cyp450s co-contribute to pharmacokinetic variability in mice with non-alcoholic steatohepatitis: Effects vary from drug to drug.
Gut microbiota
Host Cyp450s
Non-alcoholic steatohepatitis
Personalized medicine
Pharmacokinetic variability
Journal
Journal of advanced research
ISSN: 2090-1224
Titre abrégé: J Adv Res
Pays: Egypt
ID NLM: 101546952
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
05
09
2021
revised:
09
10
2021
accepted:
14
10
2021
entrez:
1
7
2022
pubmed:
2
7
2022
medline:
8
7
2022
Statut:
ppublish
Résumé
Pharmacokinetic variability in disease state is common in clinical practice, but its underlying mechanism remains unclear. Recently, gut microbiota has been considered to be pharmacokinetically equivalent to the host liver. Although some studies have explored the roles of gut microbiota and host Cyp450s in drug pharmacokinetics, few have explored their effects on pharmacokinetic variability, especially in disease states. In this study, we aim to investigate the effects of gut microbiota and host Cyp450s on pharmacokinetic variability in mice with non-alcoholic steatohepatitis (NASH), and to elucidate the contribution of gut microbiota and host Cyp450s to pharmacokinetic variability in this setting. The pharmacokinetic variability of mice with NASH was explored under intragastric and intravenous administrations of a cocktail mixture of omeprazole, phenacetin, midazolam, tolbutamide, chlorzoxazone, and metoprolol, after which the results were compared with those obtained from the control group. Thereafter, the pharmacokinetic variabilities of all drugs and their relations to the changes in gut microbiota and host Cyp450s were compared and analyzed. The exposures of all drugs, except metoprolol, significantly increased in the NASH group under intragastric administration. However, no significant increase in the exposure of all drugs, except tolbutamide, was observed in the NASH group under intravenous administration. The pharmacokinetic variabilities of phenacetin, midazolam, omeprazole, and chlorzoxazone were mainly associated with decreased elimination activity in the gut microbiota. By contrast, the pharmacokinetic variability of tolbutamide was mainly related to the change in the host Cyp2c65. Notably, gut microbiota and host Cyp450s exerted minimal effects on the pharmacokinetic variability of metoprolol. Gut microbiota and host Cyp450s co-contribute to the pharmacokinetic variability in mice with NASH, and the degree of contribution varies from drug to drug. The present findings provide new insights into the explanation of pharmacokinetic variability in disease states.
Identifiants
pubmed: 35777915
pii: S2090-1232(21)00200-9
doi: 10.1016/j.jare.2021.10.004
pmc: PMC9263650
pii:
doi:
Substances chimiques
Pharmaceutical Preparations
0
Tolbutamide
982XCM1FOI
Phenacetin
ER0CTH01H9
Metoprolol
GEB06NHM23
Chlorzoxazone
H0DE420U8G
Omeprazole
KG60484QX9
Midazolam
R60L0SM5BC
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
319-332Informations de copyright
Copyright © 2022. Production and hosting by Elsevier B.V.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
J Clin Pharmacol. 2020 Jan;60(1):86-95
pubmed: 31378969
Drug Metab Pers Ther. 2016 Sep 1;31(3):165-71
pubmed: 27522101
Dig Dis Sci. 2016 May;61(5):1214-25
pubmed: 27038448
Clin Transl Sci. 2020 Sep;13(5):972-984
pubmed: 32216086
Int J Mol Sci. 2019 Jan 14;20(2):
pubmed: 30646522
Biomed Chromatogr. 2014 Feb;28(2):197-203
pubmed: 23946123
Pac Symp Biocomput. 2018;23:56-67
pubmed: 29218869
PLoS Biol. 2016 Aug 19;14(8):e1002533
pubmed: 27541692
Clin Pharmacol Ther. 2003 Mar;73(3):264-71
pubmed: 12621391
Science. 2019 Feb 8;363(6427):
pubmed: 30733391
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Mar 15;1047:173-179
pubmed: 27432733
Anal Bioanal Chem. 2014 Aug;406(20):4875-87
pubmed: 24894520
Molecules. 2017 Nov 20;22(11):
pubmed: 29156621
Lipids Health Dis. 2021 Aug 26;20(1):92
pubmed: 34446002
Drug Metab Rev. 2017 May;49(2):197-211
pubmed: 28303724
Physiology (Bethesda). 2021 Mar 1;36(2):94-101
pubmed: 33595384
J Gastroenterol. 2018 Mar;53(3):362-376
pubmed: 29247356
Theranostics. 2017 Jun 24;7(9):2443-2451
pubmed: 28744326
Arch Pharm Res. 2014 Mar;37(3):371-8
pubmed: 23771520
Drug Metabol Drug Interact. 2012;27(1):1-2
pubmed: 22718619
Nat Rev Microbiol. 2013 Apr;11(4):227-38
pubmed: 23435359
Annu Rev Med. 2017 Jan 14;68:85-98
pubmed: 27732787
Curr Protoc Mouse Biol. 2019 Mar;9(1):e59
pubmed: 30645047
PLoS One. 2014 Feb 05;9(2):e87150
pubmed: 24505278
Curr Opin Gastroenterol. 2017 May;33(3):128-133
pubmed: 28257306
Mol Nutr Food Res. 2013 Jan;57(1):84-99
pubmed: 23166009
Clin Pharmacol Ther. 2008 Feb;83(2):273-80
pubmed: 17609683
Toxicol Appl Pharmacol. 2018 Aug 1;352:28-37
pubmed: 29792946
Br J Clin Pharmacol. 2009 Dec;68(6):928-35
pubmed: 20002088
Clin Pharmacol Ther. 2015 Apr;97(4):419-27
pubmed: 25669174
J Hepatol. 2018 Feb;68(2):362-375
pubmed: 29122694
Gut Microbes. 2014 Mar-Apr;5(2):233-8
pubmed: 24637603
Clin Gastroenterol Hepatol. 2014 Apr;12(4):565-70
pubmed: 24486737
J Hepatol. 2015 Apr;62(1 Suppl):S47-64
pubmed: 25920090
World J Gastroenterol. 2018 Jun 21;24(23):2468-2481
pubmed: 29930468
J Hepatol. 2020 Mar;72(3):558-577
pubmed: 31622696
Evid Based Complement Alternat Med. 2019 Mar 5;2019:1983780
pubmed: 30949215
Pharmacol Res. 2018 Apr;130:164-171
pubmed: 29391236
Clin Pharmacokinet. 2002;41(10):751-90
pubmed: 12162761
J Clin Pharmacol. 1993 Nov;33(11):1011-2
pubmed: 8300882
Annu Rev Pharmacol Toxicol. 2012;52:37-56
pubmed: 21819238
Clin Pharmacol Ther. 1997 Oct;62(4):365-76
pubmed: 9357387
Arch Pharm Res. 2017 Dec;40(12):1345-1355
pubmed: 29181640
J Food Sci. 2018 May;83(5):1444-1453
pubmed: 29660761
Curr Drug Metab. 2007 Feb;8(2):109-36
pubmed: 17305491
Biochem Res Int. 2018 Apr 3;2018:1467143
pubmed: 29850248
J Gastroenterol Hepatol. 2020 Nov;35(11):1978-1989
pubmed: 32027419
Hepatol Int. 2020 Jan;14(1):8-23
pubmed: 31802390
J Biochem Mol Toxicol. 2017 Feb;31(2):
pubmed: 27712037
Gastroenterology. 2016 Jun;150(8):1769-77
pubmed: 26928243
Acta Pharm Sin B. 2021 Jul;11(7):1789-1812
pubmed: 34386321
N Engl J Med. 1981 Oct 1;305(14):789-94
pubmed: 7266632
EMBO Mol Med. 2019 Feb;11(2):
pubmed: 30591521
Gastroenterology. 2012 Jun;142(7):1592-609
pubmed: 22656328
Hepatology. 2020 May;71(5):1851-1864
pubmed: 32012320
Curr Drug Metab. 2009 Sep;10(7):692-9
pubmed: 19702532
Eur J Nutr. 2018 Apr;57(3):861-876
pubmed: 28875318
Front Endocrinol (Lausanne). 2019 Sep 26;10:665
pubmed: 31616384
Nat Med. 2018 Jul;24(7):908-922
pubmed: 29967350
Br J Clin Pharmacol. 2014 Sep;78(3):572-86
pubmed: 24697814
Biomed Res Int. 2019 Jan 21;2019:9614781
pubmed: 30800683
Science. 2006 Jun 2;312(5778):1355-9
pubmed: 16741115
Am J Obstet Gynecol. 1990 Dec;163(6 Pt 2):2146-52
pubmed: 2256523