Activating cannabinoid receptor 2 preserves axonal health through GSK-3β/NRF2 axis in adrenoleukodystrophy.


Journal

Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041

Informations de publication

Date de publication:
08 2022
Historique:
received: 11 01 2022
accepted: 05 06 2022
revised: 04 06 2022
pubmed: 2 7 2022
medline: 20 7 2022
entrez: 1 7 2022
Statut: ppublish

Résumé

Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3β/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.

Identifiants

pubmed: 35778568
doi: 10.1007/s00401-022-02451-2
pii: 10.1007/s00401-022-02451-2
doi:

Substances chimiques

ATP Binding Cassette Transporter, Subfamily D, Member 1 0
Abcd1 protein, mouse 0
Endocannabinoids 0
NF-E2-Related Factor 2 0
Receptors, Cannabinoid 0
Glycogen Synthase Kinase 3 beta EC 2.7.11.1

Banques de données

ClinicalTrials.gov
['NCT01495260']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

241-258

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Agudo J, Martin M, Roca C, Molas M, Bura AS et al (2010) Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. Diabetologia 53:2629–2640. https://doi.org/10.1007/s00125-010-1894-6
doi: 10.1007/s00125-010-1894-6 pubmed: 20835701
Aso E, Juves S, Maldonado R, Ferrer I (2013) CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimers Dis 35:847–858. https://doi.org/10.3233/JAD-130137
doi: 10.3233/JAD-130137 pubmed: 23515018
Attarian S, Young P, Brannagan TH, Adams D, Van Damme P et al (2021) A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J Rare Dis 16:433. https://doi.org/10.1186/s13023-021-02040-8
doi: 10.1186/s13023-021-02040-8 pubmed: 34656144 pmcid: 8520617
Aubourg P, Blanche S, Jambaque I, Rocchiccioli F, Kalifa G et al (1990) Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med 322:1860–1866. https://doi.org/10.1056/NEJM199006283222607
doi: 10.1056/NEJM199006283222607 pubmed: 2348839
Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI et al (2015) Antioxidant Role for lipid droplets in a stem cell niche of drosophila. Cell 163:340–353. https://doi.org/10.1016/j.cell.2015.09.020
doi: 10.1016/j.cell.2015.09.020 pubmed: 26451484 pmcid: 4601084
Barendsen RW, Dijkstra IME, Visser WF, Alders M, Bliek J et al (2020) Adrenoleukodystrophy newborn screening in the netherlands (SCAN Study): the X-factor. Front Cell Dev Biol 8:499. https://doi.org/10.3389/fcell.2020.00499
doi: 10.3389/fcell.2020.00499 pubmed: 32626714 pmcid: 7311642
Benito C, Romero JP, Tolón RM, Clemente D, Docagne F et al (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402. https://doi.org/10.1523/jneurosci.4814-06.2007
doi: 10.1523/jneurosci.4814-06.2007 pubmed: 17329437 pmcid: 6673484
Benito C, Tolón RM, Pazos MR, Núñez E, Castillo AI et al (2008) Cannabinoid CB2 receptors in human brain inflammation. Br J Pharmacol 153:277–285. https://doi.org/10.1038/sj.bjp.0707505
doi: 10.1038/sj.bjp.0707505 pubmed: 17934510
Bergner CG, van der Meer F, Winkler A, Wrzos C, Türkmen M et al (2019) Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia 67:1196–1209. https://doi.org/10.1002/glia.23598
doi: 10.1002/glia.23598 pubmed: 30980503 pmcid: 6594046
Bernal-Chico A, Canedo M, Manterola A, Victoria Sánchez-Gómez M, Pérez-Samartín A et al (2015) Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo. Glia 63:163–176. https://doi.org/10.1002/glia.22742
doi: 10.1002/glia.22742 pubmed: 25130621
Bouchard J, Truong J, Bouchard K, Dunkelberger D, Desrayaud S et al (2012) Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J Neurosci 32:18259–18268. https://doi.org/10.1523/jneurosci.4008-12.2012
doi: 10.1523/jneurosci.4008-12.2012 pubmed: 23238740 pmcid: 3753072
Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823. https://doi.org/10.1126/science.1171242
doi: 10.1126/science.1171242 pubmed: 19892975
Casasnovas C, Ruiz M, Schluter A, Naudi A, Fourcade S et al (2019) Biomarker identification, safety, and efficacy of high-dose antioxidants for adrenomyeloneuropathy: a phase II Pilot Study. Neurotherapeutics. https://doi.org/10.1007/s13311-019-00735-2
doi: 10.1007/s13311-019-00735-2 pubmed: 31077039 pmcid: 6985062
Chang CL, Weigel AV, Ioannou MS, Pasolli HA, Xu CS et al (2019) Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J Cell Biol 218:2583–2599. https://doi.org/10.1083/jcb.201902061
doi: 10.1083/jcb.201902061 pubmed: 31227594 pmcid: 6683741
Chmiel JF, Flume P, Downey DG, Dozor AJ, Colombo C et al (2020) Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with cystic fibrosis. J Cyst Fibros. https://doi.org/10.1016/j.jcf.2020.09.008
doi: 10.1016/j.jcf.2020.09.008 pubmed: 33011099
Chung YC, Shin WH, Baek JY, Cho EJ, Baik HH et al (2016) CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease. Exp Mol Med 48:e205. https://doi.org/10.1038/emm.2015.100
doi: 10.1038/emm.2015.100 pubmed: 27534533 pmcid: 4892852
Coppa A, Guha S, Fourcade S, Parameswaran J, Ruiz M et al (2020) The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: a worm model for adrenoleukodystrophy. Free Radic Biol Med 152:797–809. https://doi.org/10.1016/j.freeradbiomed.2020.01.177
doi: 10.1016/j.freeradbiomed.2020.01.177 pubmed: 32017990 pmcid: 7611262
Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29. https://doi.org/10.1038/s41582-019-0284-z
doi: 10.1038/s41582-019-0284-z pubmed: 31831863
D’Hooghe M, Willekens B, Delvaux V, D’Haeseleer M, Guillaume D et al (2021) Sativex® (nabiximols) cannabinoid oromucosal spray in patients with resistant multiple sclerosis spasticity: the Belgian experience. BMC Neurol 21:227. https://doi.org/10.1186/s12883-021-02246-0
doi: 10.1186/s12883-021-02246-0 pubmed: 34157999 pmcid: 8218396
Dhopeshwarkar A, Mackie K (2014) CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 86:430–437. https://doi.org/10.1124/mol.114.094649
doi: 10.1124/mol.114.094649 pubmed: 25106425 pmcid: 4164977
Di Marzo V (2018) New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17:623–639. https://doi.org/10.1038/nrd.2018.115
doi: 10.1038/nrd.2018.115 pubmed: 30116049
Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S et al (2017) Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 377:1630–1638. https://doi.org/10.1056/NEJMoa1700554
doi: 10.1056/NEJMoa1700554 pubmed: 28976817 pmcid: 5708849
Eichler FS, Ren JQ, Cossoy M, Rietsch AM, Nagpal S et al (2008) Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol 63:729–742. https://doi.org/10.1002/ana.21391
doi: 10.1002/ana.21391 pubmed: 18571777
Espejo-Porras F, Fernández-Ruiz J, de Lago E (2018) Analysis of endocannabinoid receptors and enzymes in the post-mortem motor cortex and spinal cord of amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 19:377–386. https://doi.org/10.1080/21678421.2018.1425454
doi: 10.1080/21678421.2018.1425454 pubmed: 29334787
Espejo-Porras F, García-Toscano L, Rodríguez-Cueto C, Santos-García I, de Lago E et al (2019) Targeting glial cannabinoid CB(2) receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis. Br J Pharmacol 176:1585–1600. https://doi.org/10.1111/bph.14216
doi: 10.1111/bph.14216 pubmed: 29574689
Feliú A, Bonilla Del Río I, Carrillo-Salinas FJ, Hernández-Torres G, Mestre L et al (2017) 2-Arachidonoylglycerol reduces proteoglycans and enhances remyelination in a progressive model of demyelination. J Neurosci 37:8385–8398. https://doi.org/10.1523/jneurosci.2900-16.2017
doi: 10.1523/jneurosci.2900-16.2017 pubmed: 28751457 pmcid: 6596867
Fernandez O, Costa-Frossard L, Martínez-Ginés ML, Montero P, Prieto-González JM et al (2021) Integrated management of multiple sclerosis spasticity and associated symptoms using the spasticity-plus syndrome concept: results of a structured specialists’ discussion using the Workmat(®) methodology. Front Neurol 12:722801. https://doi.org/10.3389/fneur.2021.722801
doi: 10.3389/fneur.2021.722801 pubmed: 34646229 pmcid: 8503561
Ferrer I, Kapfhammer JP, Hindelang C, Kemp S, Troffer-Charlier N et al (2005) Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. Hum Mol Genet 14:3565–3577. https://doi.org/10.1093/hmg/ddi384
doi: 10.1093/hmg/ddi384 pubmed: 16223892
Fourcade S, Ferrer I, Pujol A (2015) Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: a paradigm for axonal degeneration. Free Radic Biol Med 88:18–29. https://doi.org/10.1016/j.freeradbiomed.2015.05.041
doi: 10.1016/j.freeradbiomed.2015.05.041 pubmed: 26073123
Fourcade S, Goicoechea L, Parameswaran J, Schlüter A, Launay N et al (2020) High-dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy. Brain Pathol 30:945–963. https://doi.org/10.1111/bpa.12869
doi: 10.1111/bpa.12869 pubmed: 32511826 pmcid: 8018149
Fourcade S, Lopez-Erauskin J, Galino J, Duval C, Naudi A et al (2008) Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773. https://doi.org/10.1093/hmg/ddn085
doi: 10.1093/hmg/ddn085 pubmed: 18344354
Fourcade S, Ruiz M, Camps C, Schluter A, Houten SM et al (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296:E211-221. https://doi.org/10.1152/ajpendo.90736.2008
doi: 10.1152/ajpendo.90736.2008 pubmed: 18854420
Galán-Ganga M, Del Río R, Jiménez-Moreno N, Díaz-Guerra M, Lastres-Becker I (2020) Cannabinoid CB(2) receptor modulation by the transcription factor NRF2 is specific in microglial cells. Cell Mol Neurobiol 40:167–177. https://doi.org/10.1007/s10571-019-00719-y
doi: 10.1007/s10571-019-00719-y pubmed: 31385133
Galea E, Launay N, Portero-Otin M, Ruiz M, Pamplona R et al (2012) Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? Biochim Biophys Acta 1822:1475–1488. https://doi.org/10.1016/j.bbadis.2012.02.005
doi: 10.1016/j.bbadis.2012.02.005 pubmed: 22353463
Galino J, Ruiz M, Fourcade S, Schluter A, Lopez-Erauskin J et al (2011) Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. Antioxid Redox Signal 15:2095–2107. https://doi.org/10.1089/ars.2010.3877
doi: 10.1089/ars.2010.3877 pubmed: 21453200 pmcid: 3166200
Ghosn J, Taiwo B, Seedat S, Autran B, Katlama C (2018) HIV. Lancet 392:685–697. https://doi.org/10.1016/s0140-6736(18)31311-4
doi: 10.1016/s0140-6736(18)31311-4 pubmed: 30049419
Gong Y, Sasidharan N, Laheji F, Frosch M, Musolino P et al (2017) Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Ann Neurol 82:813–827. https://doi.org/10.1002/ana.25085
doi: 10.1002/ana.25085 pubmed: 29059709 pmcid: 5725816
Han S, Thatte J, Buzard DJ, Jones RM (2013) Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists. J Med Chem 56:8224–8256. https://doi.org/10.1021/jm4005626
doi: 10.1021/jm4005626 pubmed: 23865723
Han S, Thoresen L, Jung JK, Zhu X, Thatte J et al (2017) Discovery of APD371: identification of a highly potent and selective CB(2) agonist for the treatment of chronic pain. ACS Med Chem Lett 8:1309–1313. https://doi.org/10.1021/acsmedchemlett.7b00396
doi: 10.1021/acsmedchemlett.7b00396 pubmed: 29259753 pmcid: 5733264
Inloes JM, Hsu KL, Dix MM, Viader A, Masuda K et al (2014) The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc Natl Acad Sci USA 111:14924–14929. https://doi.org/10.1073/pnas.1413706111
doi: 10.1073/pnas.1413706111 pubmed: 25267624 pmcid: 4205627
Inloes JM, Kiosses WB, Wang H, Walther TC, Farese RV Jr et al (2018) Functional contribution of the spastic paraplegia-related triglyceride hydrolase DDHD2 to the formation and content of lipid droplets. Biochemistry 57:827–838. https://doi.org/10.1021/acs.biochem.7b01028
doi: 10.1021/acs.biochem.7b01028 pubmed: 29278326
Keimpema E, Di Marzo V, Harkany T (2021) Biological basis of cannabinoid medicines. Science 374:1449–1450. https://doi.org/10.1126/science.abf6099
doi: 10.1126/science.abf6099 pubmed: 34914498
Kemp S, Huffnagel IC, Linthorst GE, Wanders RJ, Engelen M (2016) Adrenoleukodystrophy - neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol 12:606–615. https://doi.org/10.1038/nrendo.2016.90
doi: 10.1038/nrendo.2016.90 pubmed: 27312864
Klemm RW, Norton JP, Cole RA, Li CS, Park SH et al (2013) A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Rep 3:1465–1475. https://doi.org/10.1016/j.celrep.2013.04.015
doi: 10.1016/j.celrep.2013.04.015 pubmed: 23684613 pmcid: 3742324
Kong W, Li H, Tuma RF, Ganea D (2014) Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cell Immunol 287:1–17. https://doi.org/10.1016/j.cellimm.2013.11.002
doi: 10.1016/j.cellimm.2013.11.002 pubmed: 24342422
Kuhl JS, Kupper J, Baque H, Ebell W, Gartner J et al (2018) Potential risks to stable long-term outcome of allogeneic hematopoietic stem cell transplantation for children with cerebral X-linked adrenoleukodystrophy. JAMA Netw Open 1:e180769. https://doi.org/10.1001/jamanetworkopen.2018.0769
doi: 10.1001/jamanetworkopen.2018.0769 pubmed: 30646031
Launay N, Aguado C, Fourcade S, Ruiz M, Grau L et al (2015) Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy. Acta Neuropathol 129:399–415. https://doi.org/10.1007/s00401-014-1378-8
doi: 10.1007/s00401-014-1378-8 pubmed: 25549970
Launay N, Ruiz M, Grau L, Ortega FJ, Ilieva EV et al (2017) Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathol 133:283–301. https://doi.org/10.1007/s00401-016-1655-9
doi: 10.1007/s00401-016-1655-9 pubmed: 28004277
Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M et al (2015) Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160:177–190. https://doi.org/10.1016/j.cell.2014.12.019
doi: 10.1016/j.cell.2014.12.019 pubmed: 25594180 pmcid: 4377295
Lopez-Erauskin J, Fourcade S, Galino J, Ruiz M, Schluter A et al (2011) Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol 70:84–92. https://doi.org/10.1002/ana.22363
doi: 10.1002/ana.22363 pubmed: 21786300 pmcid: 3229843
Lopez-Erauskin J, Galino J, Bianchi P, Fourcade S, Andreu AL et al (2012) Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain 135:3584–3598. https://doi.org/10.1093/brain/aws292
doi: 10.1093/brain/aws292 pubmed: 23250880 pmcid: 3525057
Lopez-Erauskin J, Galino J, Ruiz M, Cuezva JM, Fabregat I et al (2013) Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet 22:3296–3305. https://doi.org/10.1093/hmg/ddt186
doi: 10.1093/hmg/ddt186 pubmed: 23604518
López A, Aparicio N, Pazos MR, Grande MT, Barreda-Manso MA et al (2018) Cannabinoid CB(2) receptors in the mouse brain: relevance for Alzheimer’s disease. J Neuroinflamm 15:158. https://doi.org/10.1186/s12974-018-1174-9
doi: 10.1186/s12974-018-1174-9
Lu JF, Lawler AM, Watkins PA, Powers JM, Moser AB et al (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci USA 94:9366–9371. https://doi.org/10.1073/pnas.94.17.9366
doi: 10.1073/pnas.94.17.9366 pubmed: 9256488 pmcid: 23196
Mallack EJ, Turk BR, Yan H, Price C, Demetres M et al (2021) MRI surveillance of boys with X-linked adrenoleukodystrophy identified by newborn screening: Meta-analysis and consensus guidelines. J Inherit Metab Dis 44:728–739. https://doi.org/10.1002/jimd.12356
doi: 10.1002/jimd.12356 pubmed: 33373467 pmcid: 8113077
Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445. https://doi.org/10.1111/j.1471-4159.2005.03380.x
doi: 10.1111/j.1471-4159.2005.03380.x pubmed: 16086683
Martín-Moreno AM, Brera B, Spuch C, Carro E, García-García L et al (2012) Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflamm 9:8. https://doi.org/10.1186/1742-2094-9-8
doi: 10.1186/1742-2094-9-8
Mecha M, Carrillo-Salinas FJ, Feliú A, Mestre L, Guaza C (2016) Microglia activation states and cannabinoid system: therapeutic implications. Pharmacol Ther 166:40–55. https://doi.org/10.1016/j.pharmthera.2016.06.011
doi: 10.1016/j.pharmthera.2016.06.011 pubmed: 27373505
Morales P, Jagerovic N (2020) Novel approaches and current challenges with targeting the endocannabinoid system. Expert Opin Drug Discov 15:917–930. https://doi.org/10.1080/17460441.2020.1752178
doi: 10.1080/17460441.2020.1752178 pubmed: 32336154 pmcid: 7502221
Morato L, Galino J, Ruiz M, Calingasan NY, Starkov AA et al (2013) Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain 136:2432–2443. https://doi.org/10.1093/brain/awt143
doi: 10.1093/brain/awt143 pubmed: 23794606 pmcid: 4550111
Morato L, Ruiz M, Boada J, Calingasan NY, Galino J et al (2015) Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death Differ 22:1742–1753. https://doi.org/10.1038/cdd.2015.20
doi: 10.1038/cdd.2015.20 pubmed: 25822341 pmcid: 4648322
Moser AB, Fatemi A (2018) Newborn screening and emerging therapies for X-linked adrenoleukodystrophy. JAMA Neurol 75:1175–1176. https://doi.org/10.1001/jamaneurol.2018.1585
doi: 10.1001/jamaneurol.2018.1585 pubmed: 29946687
Navarrete F, García-Gutiérrez MS, Aracil-Fernández A, Lanciego JL, Manzanares J (2018) Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with Parkinson’s disease. Neurotherapeutics 15:459–469. https://doi.org/10.1007/s13311-018-0603-x
doi: 10.1007/s13311-018-0603-x pubmed: 29352424 pmcid: 5935636
Navarro-Romero A, Vázquez-Oliver A, Gomis-González M, Garzón-Montesinos C, Falcón-Moya R et al (2019) Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome. Neurobiol Dis 125:92–106. https://doi.org/10.1016/j.nbd.2019.01.014
doi: 10.1016/j.nbd.2019.01.014 pubmed: 30685352
Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132:3152–3164. https://doi.org/10.1093/brain/awp239
doi: 10.1093/brain/awp239 pubmed: 19805493
Patti F, Chisari CG, Solaro C, Benedetti MD, Berra E et al (2020) Effects of THC/CBD oromucosal spray on spasticity-related symptoms in people with multiple sclerosis: results from a retrospective multicenter study. Neurol Sci 41:2905–2913. https://doi.org/10.1007/s10072-020-04413-6
doi: 10.1007/s10072-020-04413-6 pubmed: 32335779
Pennetta G, Welte MA (2018) Emerging links between lipid droplets and motor neuron diseases. Dev Cell 45:427–432. https://doi.org/10.1016/j.devcel.2018.05.002
doi: 10.1016/j.devcel.2018.05.002 pubmed: 29787708 pmcid: 5988256
Pujol A, Ferrer I, Camps C, Metzger E, Hindelang C et al (2004) Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. HumMolGenet 13:2997–3006. https://doi.org/10.1093/hmg/ddh323
doi: 10.1093/hmg/ddh323
Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M et al (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11:499–505. https://doi.org/10.1093/hmg/11.5.499
doi: 10.1093/hmg/11.5.499 pubmed: 11875044
Ranea-Robles P, Launay N, Ruiz M, Calingasan NY, Dumont M et al (2018) Aberrant regulation of the GSK-3beta/NRF2 axis unveils a novel therapy for adrenoleukodystrophy. EMBO Mol Med. https://doi.org/10.15252/emmm.201708604
doi: 10.15252/emmm.201708604 pubmed: 29997171 pmcid: 6079538
Rodríguez-Pascau L, Vilalta A, Cerrada M, Traver E, Forss-Petter S et al (2021) The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abc0555
doi: 10.1126/scitranslmed.abc0555 pubmed: 34078742
Rossi F, Bellini G, Luongo L, Manzo I, Tolone S et al (2016) Cannabinoid receptor 2 as antiobesity target: inflammation, fat storage, and browning modulation. J Clin Endocrinol Metab 101:3469–3478. https://doi.org/10.1210/jc.2015-4381
doi: 10.1210/jc.2015-4381 pubmed: 27294325
Ruiz M, Jove M, Schluter A, Casasnovas C, Villarroya F et al (2015) Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy. Hum Mol Genet 24:6861–6876. https://doi.org/10.1093/hmg/ddv375
doi: 10.1093/hmg/ddv375 pubmed: 26370417
Schluter A, Espinosa L, Fourcade S, Galino J, Lopez E et al (2012) Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy. Hum Mol Genet 21:1062–1077. https://doi.org/10.1093/hmg/ddr536
doi: 10.1093/hmg/ddr536 pubmed: 22095690
Singh I, Pujol A (2010) Pathomechanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis. Brain Pathol 20:838–844. https://doi.org/10.1111/j.1750-3639.2010.00392.x
doi: 10.1111/j.1750-3639.2010.00392.x pubmed: 20626745 pmcid: 3021280
Spiera R, Hummers L, Chung L, Frech TM, Domsic R et al (2020) Safety and efficacy of lenabasum in a phase II, randomized, placebo-controlled trial in adults with systemic sclerosis. Arthritis Rheumatol 72:1350–1360. https://doi.org/10.1002/art.41294
doi: 10.1002/art.41294 pubmed: 32336038 pmcid: 7497006
Stevens RM, Nicholson JR, Sauer A, Nolte T, Corradini L (2019) Evaluation of the selective oral CB2 agonist CNTX-6016 for the treatment of neuropathic pain: pharmacokinetic, efficacy, and safety findings from preclinical studies. PAINWeek Abstract Book 2019. Postgrad Med 130:83–84
Tadepalle N, Rugarli EI (2021) Lipid droplets in the pathogenesis of hereditary spastic paraplegia. Front Mol Biosci 8:673977. https://doi.org/10.3389/fmolb.2021.673977
doi: 10.3389/fmolb.2021.673977 pubmed: 34041268 pmcid: 8141572
Waldhuter N, Kohler W, Hemmati PG, Jehn C, Peceny R et al (2019) Allogeneic hematopoietic stem cell transplantation with myeloablative conditioning for adult cerebral X-linked adrenoleukodystrophy. J Inherit Metab Dis 42:313–324. https://doi.org/10.1002/jimd.12044
doi: 10.1002/jimd.12044 pubmed: 30746707
Wiesinger C, Eichler FS, Berger J (2015) The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. Appl Clin Genet 8:109–121. https://doi.org/10.2147/TACG.S49590
doi: 10.2147/TACG.S49590 pubmed: 25999754 pmcid: 4427263
Xu J, Kulkarni SR, Donepudi AC, More VR, Slitt AL (2012) Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes 61:3208–3218. https://doi.org/10.2337/db11-1716
doi: 10.2337/db11-1716 pubmed: 22936178 pmcid: 3501889

Auteurs

Janani Parameswaran (J)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.
Department of Cell Biology, Emory University, Atlanta, GA, 30329, USA.

Leire Goicoechea (L)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.
Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.

Laura Planas-Serra (L)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.

Antoni Pastor (A)

Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.

Montserrat Ruiz (M)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.

Noel Y Calingasan (NY)

Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA.

Cristina Guilera (C)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.

Ester Aso (E)

Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de La Salut, IDIBELL-Universitat de Barcelona, C/Feixa Llarga S/N, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
Institute of Neurosciences, University of Barcelona, Barcelona, Spain.

Jordi Boada (J)

Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain.

Reinald Pamplona (R)

Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain.

Manuel Portero-Otín (M)

Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain.

Rafael de la Torre (R)

Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.

Isidre Ferrer (I)

Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.

Carlos Casasnovas (C)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.
Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.

Aurora Pujol (A)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain. apujol@idibell.cat.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain. apujol@idibell.cat.
Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain. apujol@idibell.cat.

Stéphane Fourcade (S)

Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran I Reynals, Gran Via 199, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
CIBERER U759, Center for Biomedical Research On Rare Diseases, Madrid, Spain.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH