Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP.


Journal

Biophysical journal
ISSN: 1542-0086
Titre abrégé: Biophys J
Pays: United States
ID NLM: 0370626

Informations de publication

Date de publication:
02 08 2022
Historique:
received: 14 04 2022
revised: 07 06 2022
accepted: 27 06 2022
pubmed: 3 7 2022
medline: 6 8 2022
entrez: 2 7 2022
Statut: ppublish

Résumé

Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled β-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of β-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.

Identifiants

pubmed: 35778840
pii: S0006-3495(22)00542-2
doi: 10.1016/j.bpj.2022.06.032
pmc: PMC9388576
pii:
doi:

Substances chimiques

Actins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2921-2930

Informations de copyright

Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of interests The authors declare no competing interests.

Références

Biomech Model Mechanobiol. 2021 Feb;20(1):155-166
pubmed: 32776260
Biophys J. 1976 Sep;16(9):1055-69
pubmed: 786399
Mol Biol Cell. 2004 Jul;15(7):3497-508
pubmed: 15133124
Biophys J. 2020 Aug 18;119(4):737-748
pubmed: 32771078
Cytoskeleton (Hoboken). 2019 Nov;76(11-12):611-625
pubmed: 31443136
J Cell Biol. 2008 Dec 15;183(6):999-1005
pubmed: 19075110
Biophys J. 1999 May;76(5):2843-51
pubmed: 10233100
Biophys J. 2008 Dec;95(11):5334-48
pubmed: 18567628
Oncogene. 2011 Nov 3;30(44):4464-75
pubmed: 21577206
J Biochem. 2014 Nov;156(5):239-48
pubmed: 25190817
ACS Biomater Sci Eng. 2022 Mar 14;8(3):1028-1048
pubmed: 35201752
Biophys J. 2017 Apr 25;112(8):1714-1725
pubmed: 28445762
Opt Express. 2010 Oct 25;18(22):22886-905
pubmed: 21164628
Biophys J. 2004 Jun;86(6):3473-95
pubmed: 15189848
Mol Biol Cell. 2021 Feb 1;32(3):237-246
pubmed: 33326250
Exp Cell Res. 2021 Jul 1;404(1):112619
pubmed: 33965400
Proc Natl Acad Sci U S A. 1985 Jun;82(12):4122-6
pubmed: 3858869
Microsc Res Tech. 2007 Dec;70(12):1034-40
pubmed: 17722058
Q Rev Biophys. 2015 Aug;48(3):323-87
pubmed: 26314367
Biophys J. 2006 Aug 15;91(4):1169-91
pubmed: 16679358
J Phys Chem B. 2013 Feb 7;117(5):1241-51
pubmed: 23311513
Interface Focus. 2011 Oct 6;1(5):754-66
pubmed: 23050080
Cytometry A. 2013 Sep;83(9):876-89
pubmed: 23847177
PLoS One. 2022 Nov 7;17(11):e0276909
pubmed: 36342915
PLoS One. 2015 Mar 17;10(3):e0116637
pubmed: 25780926
J Cell Sci. 2008 Nov 15;121(Pt 22):3834-41
pubmed: 18957509
Biophys J. 1993 Dec;65(6):2428-36
pubmed: 8312481
Biomech Model Mechanobiol. 2020 Apr;19(2):543-555
pubmed: 31549258
Biophys J. 2009 Mar 18;96(6):2055-63
pubmed: 19289033
J Theor Biol. 2010 May 7;264(1):55-65
pubmed: 20093125
J Cell Sci. 2001 Nov;114(Pt 21):3885-97
pubmed: 11719555

Auteurs

Takumi Saito (T)

Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan. Electronic address: takumi.saitou.b2@tohoku.ac.jp.

Daiki Matsunaga (D)

Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.

Shinji Deguchi (S)

Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan. Electronic address: deguchi.shinji.es@osaka-u.ac.jp.

Articles similaires

Cerebrospinal Fluid Animals Liver Glymphatic System Spinal Cord
Animals Humans Mice Neoplasms Tumor Microenvironment
Pseudopodia Myosins Humans Actins Cell Line, Tumor

Classifications MeSH