Predicting perineural invasion using histogram analysis of zoomed EPI diffusion-weighted imaging in rectal cancer.
Diffusion-weighted imaging
Magnetic resonance imaging
Peripheral nerve
Rectal neoplasms
Journal
Abdominal radiology (New York)
ISSN: 2366-0058
Titre abrégé: Abdom Radiol (NY)
Pays: United States
ID NLM: 101674571
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
24
02
2022
accepted:
06
06
2022
revised:
06
06
2022
pubmed:
3
7
2022
medline:
14
9
2022
entrez:
2
7
2022
Statut:
ppublish
Résumé
To investigate the utility of histogram analysis of zoomed EPI diffusion-weighted imaging (DWI) for predicting the perineural invasion (PNI) status of rectal cancer (RC). This prospective study evaluated 94 patients diagnosed with histopathologically confirmed RC between July 2020 and July 2021. Patients underwent preoperative rectal magnetic resonance imaging (MRI) examinations, including the zoomed EPI DWI sequence. Ten whole-tumor histogram parameters of each patient were derived from zoomed EPI DWI. Reproducibility was evaluated according to the intra-class correlation coefficient (ICC). The association of the clinico-radiological and histogram features with PNI status was assessed using univariable analysis for trend and multivariable logistic regression analysis with β value calculation. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic performance. Forty-two patients exhibited positive PNI. The inter- and intraobserver agreements were excellent for the histogram parameters (all ICCs > 0.80). The maximum (p = 0.001), energy (p = 0.021), entropy (p = 0.021), kurtosis (p < 0.001), and skewness (p < 0.001) were significantly higher in the positive PNI group than in the negative PNI group. Multivariable analysis showed that higher MRI T stage [β = 2.154, 95% confidence interval (CI) 0.932-3.688; p = 0.002] and skewness (β = 0.779, 95% CI 0.255-1.382; p = 0.006) were associated with positive PNI. The model combining skewness and MRI T stage had an area under the ROC curve of 0.811 (95% CI 0.724-0.899) for predicting PNI status. Histogram parameters in zoomed EPI DWI can help predict the PNI status in RC.
Identifiants
pubmed: 35779094
doi: 10.1007/s00261-022-03579-1
pii: 10.1007/s00261-022-03579-1
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3353-3363Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71: 7–33. https://doi.org/ https://doi.org/10.3322/caac.21654
doi: 10.3322/caac.21654
pubmed: 33433946
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70: 145–164. https://doi.org/ https://doi.org/10.3322/caac.21601
doi: 10.3322/caac.21601
pubmed: 32133645
Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, Grem JL, Grothey A, Hochster HS, Hoffe S, Hunt S, Kamel A, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Mulcahy MF, Murphy JD, Nurkin S, Saltz L, Sharma S, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Wuthrick E, Gregory KM, Gurski L, Freedman-Cass DA (2018) Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 16: 874–901. https://doi.org/ https://doi.org/10.6004/jnccn.2018.0061
doi: 10.6004/jnccn.2018.0061
pubmed: 30006429
Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, Arnold D (2017) Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28: iv22–iv40. https://doi.org/10.1093/annonc/mdx224
Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D'Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pagès F (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232: 199–209. https://doi.org/ https://doi.org/10.1002/path.4287
doi: 10.1002/path.4287
pubmed: 24122236
Nagtegaal ID, Quirke P, Schmoll HJ (2011) Has the new TNM classification for colorectal cancer improved care? Nat Rev Clin Oncol 9: 119–123. https://doi.org/ https://doi.org/10.1038/nrclinonc.2011.157
doi: 10.1038/nrclinonc.2011.157
pubmed: 22009076
Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (2017) AJCC Cancer Staging Manual. 8th edn. Springer, New York, pp 265.
doi: 10.1007/978-3-319-40618-3
Liebig C, Ayala G, Wilks JA, Berger DH, Albo D (2009) Perineural invasion in cancer: a review of the literature. Cancer 115: 3379–3391. https://doi.org/ https://doi.org/10.1002/cncr.24396
doi: 10.1002/cncr.24396
pubmed: 19484787
Betge J, Langner C (2011) Vascular invasion, perineural invasion, and tumour budding: predictors of outcome in colorectal cancer. Acta Gastroenterol Belg 74: 516–529
pubmed: 22319961
Sun Q, Liu T, Liu P, Luo J, Zhang N, Lu K, Ju H, Zhu Y, Wu W, Zhang L, Fan Y, Liu Y, Li D, Zhu Y, Liu L (2019) Perineural and lymphovascular invasion predicts for poor prognosis in locally advanced rectal cancer after neoadjuvant chemoradiotherapy and surgery. J Cancer 10: 2243–2249. https://doi.org/ https://doi.org/10.7150/jca.31473
doi: 10.7150/jca.31473
pubmed: 31258728
pmcid: 6584420
Stojkovic Lalosevic M, Milovanovic T, Micev M, Stojkovic M, Dragasevic S, Stulic M, Rankovic I, Dugalic V, Krivokapic Z, Pavlovic Markovic A (2020) Perineural invasion as a prognostic factor in patients with stage I–III rectal cancer - 5-year follow up. World J Gastrointest Oncol 12: 592–600. https://doi.org/ https://doi.org/10.4251/wjgo.v12.i5.592
doi: 10.4251/wjgo.v12.i5.592
pubmed: 32461790
pmcid: 7235181
Song JH, Yu M, Kang KM, Lee JH, Kim SH, Nam TK, Jeong JU, Jang HS, Lee JW, Jung JH (2019) Significance of perineural and lymphovascular invasion in locally advanced rectal cancer treated by preoperative chemoradiotherapy and radical surgery: Can perineural invasion be an indication of adjuvant chemotherapy? Radiother Oncol 133: 125–131. https://doi.org/ https://doi.org/10.1016/j.radonc.2019.01.002
doi: 10.1016/j.radonc.2019.01.002
pubmed: 30935568
Kinugasa T, Mizobe T, Shiraiwa S, Akagi Y, Shirouzu K (2017) Perineural Invasion is a Prognostic Factor and Treatment Indicator in Patients with Rectal Cancer Undergoing Curative Surgery: 2000–2011 Data from a Single-center Study. Anticancer Res 37: 3961–3968. https://doi.org/10.21873/anticanres.11780
Aktan M, Yavuz BB, Kanyilmaz G, Oltulu P (2020) Factors affecting pathological response and survival following neoadjuvant chemoradiotherapy in rectal cancer patients. Indian J Cancer 58: 53–560. https://doi.org/ https://doi.org/10.4103/ijc.IJC_435_19
doi: 10.4103/ijc.IJC_435_19
Nikberg M, Chabok A, Letocha H, Kindler C, Glimelius B, Smedh K (2016) Lymphovascular and perineural invasion in stage II rectal cancer: a report from the Swedish colorectal cancer registry. Acta Oncol 55: 1418–1424. https://doi.org/ https://doi.org/10.1080/0284186x.2016.1230274
doi: 10.1080/0284186x.2016.1230274
pubmed: 27732105
Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3: 573–589. https://doi.org/ https://doi.org/10.1007/s13244-012-0196-6
doi: 10.1007/s13244-012-0196-6
pubmed: 23093486
pmcid: 3505569
Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269: 8–15. https://doi.org/ https://doi.org/10.1148/radiol.13122697
doi: 10.1148/radiol.13122697
pubmed: 24062559
pmcid: 3781355
Gourtsoyianni S, Doumou G, Prezzi D, Taylor B, Stirling JJ, Taylor NJ, Siddique M, Cook GJR, Glynne-Jones R, Goh V (2017) Primary Rectal Cancer: Repeatability of Global and Local-Regional MR Imaging Texture Features. Radiology 284: 552–561. https://doi.org/ https://doi.org/10.1148/radiol.2017161375
doi: 10.1148/radiol.2017161375
pubmed: 28481194
Cui Y, Yang X, Du X, Zhuo Z, Xin L, Cheng X (2018) Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors. Eur Radiol 28: 1485–1494. https://doi.org/ https://doi.org/10.1007/s00330-017-5094-3
doi: 10.1007/s00330-017-5094-3
pubmed: 29063250
Zhang K, Zheng Y, Huang H, Lei J (2021) Preliminary Study on Predicting Pathological Staging and Immunohistochemical Markers of Rectal Cancer Based on ADC Histogram Analysis. Acad Radiol 28: S184–S191. https://doi.org/ https://doi.org/10.1016/j.acra.2021.02.004
doi: 10.1016/j.acra.2021.02.004
pubmed: 33676825
Yang L, Liu D, Fang X, Wang Z, Xing Y, Ma L, Wu B (2019) Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis? Eur Radiol 29: 6469–6476. https://doi.org/ https://doi.org/10.1007/s00330-019-06328-z
doi: 10.1007/s00330-019-06328-z
pubmed: 31278581
Peng Y, Tang H, Meng X, Shen Y, Hu D, Kamel I, Li Z (2020) Histological grades of rectal cancer: whole-volume histogram analysis of apparent diffusion coefficient based on reduced field-of-view diffusion-weighted imaging. Quant Imaging Med Surg 10: 243–256. https://doi.org/10.21037/qims.2019.11.17
Shi L, Zhang Y, Nie K, Sun X, Niu T, Yue N, Kwong T, Chang P, Chow D, Chen JH, Su MY (2019) Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Magn Reson Imaging 61: 33–40. https://doi.org/ https://doi.org/10.1016/j.mri.2019.05.003
doi: 10.1016/j.mri.2019.05.003
pubmed: 31059768
pmcid: 7709818
Pham TT, Liney G, Wong K, Henderson C, Rai R, Graham PL, Borok N, Truong MX, Lee M, Shin JS, Hudson M, Barton MB (2021) Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer. Phys Imaging Radiat Oncol 18: 26–33. https://doi.org/ https://doi.org/10.1016/j.phro.2021.03.003
doi: 10.1016/j.phro.2021.03.003
pubmed: 34258404
pmcid: 8254202
He YL, Hausmann D, Morelli JN, Attenberger UI, Schoenberg SO, Riffel P (2016) Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions. Eur J Radiol 85: 1773–1777. https://doi.org/ https://doi.org/10.1016/j.ejrad.2016.07.022
doi: 10.1016/j.ejrad.2016.07.022
pubmed: 27666615
Rosenkrantz AB, Chandarana H, Pfeuffer J, Triolo MJ, Shaikh MB, Mossa DJ, Geppert C (2015) Zoomed echo-planar imaging using parallel transmission: impact on image quality of diffusion-weighted imaging of the prostate at 3 T. Abdom Imaging 40: 120–126. https://doi.org/ https://doi.org/10.1007/s00261-014-0181-2
doi: 10.1007/s00261-014-0181-2
pubmed: 24962196
Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO, Haneder S (2014) Zoomed EPI-DWI of the head and neck with two-dimensional, spatially-selective radiofrequency excitation pulses. Eur Radiol 24: 2507–2512. https://doi.org/ https://doi.org/10.1007/s00330-014-3287-6
doi: 10.1007/s00330-014-3287-6
pubmed: 24996796
Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO, Haneder S (2014) Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses. PLoS ONE 9: e89468. https://doi.org/ https://doi.org/10.1371/journal.pone.0089468
doi: 10.1371/journal.pone.0089468
pubmed: 24594702
pmcid: 3940598
Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, Fenlon HM, Gollub MJ, Gourtsoyianni S, Halligan S, Hoeffel C, Kim SH, Laghi A, Maier A, Rafaelsen SR, Stoker J, Taylor SA, Torkzad MR, Blomqvist L (2018) Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28: 1465–1475. https://doi.org/ https://doi.org/10.1007/s00330-017-5026-2
doi: 10.1007/s00330-017-5026-2
pubmed: 29043428
Smith NJ, Barbachano Y, Norman AR, Swift RI, Abulafi AM, Brown G (2008) Prognostic significance of magnetic resonance imaging-detected extramural vascular invasion in rectal cancer. Br J Surg 95: 229–236. https://doi.org/ https://doi.org/10.1002/bjs.5917
doi: 10.1002/bjs.5917
pubmed: 17932879
Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76: 182–188. https://doi.org/ https://doi.org/10.1111/his.13975
doi: 10.1111/his.13975
pubmed: 31433515
Knijn N, Mogk SC, Teerenstra S, Simmer F, Nagtegaal ID (2016) Perineural Invasion is a Strong Prognostic Factor in Colorectal Cancer: A Systematic Review. Am J Surg Pathol 40: 103–112. https://doi.org/ https://doi.org/10.1097/pas.0000000000000518
doi: 10.1097/pas.0000000000000518
pubmed: 26426380
Yeo DM, Oh SN, Choi MH, Lee SH, Lee MA, Jung SE (2018) Histogram Analysis of Perfusion Parameters from Dynamic Contrast-Enhanced MR Imaging with Tumor Characteristics and Therapeutic Response in Locally Advanced Rectal Cancer. Biomed Res Int 2018: 3724393. https://doi.org/ https://doi.org/10.1155/2018/3724393
doi: 10.1155/2018/3724393
pubmed: 30186857
pmcid: 6110013
Li Y, Liu W, Pei Q, Zhao L, Güngör C, Zhu H, Song X, Li C, Zhou Z, Xu Y, Wang D, Tan F, Yang P, Pei H (2019) Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Cancer Med 8: 7244–7252. https://doi.org/ https://doi.org/10.1002/cam4.2636
doi: 10.1002/cam4.2636
pubmed: 31642204
pmcid: 6885895
Seeger A, Klose U, Bischof F, Strobel J, Ernemann U, Hauser TK (2016) Zoomed EPI DWI of Acute Spinal Ischemia Using a Parallel Transmission System. Clin Neuroradiol 26: 177–182. https://doi.org/ https://doi.org/10.1007/s00062-014-0342-2
doi: 10.1007/s00062-014-0342-2
pubmed: 25168248
Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, Li W, Yang Z, Wang Z, Jin E (2017) Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging 45: 1798–1808. https://doi.org/ https://doi.org/10.1002/jmri.25460
doi: 10.1002/jmri.25460
pubmed: 27654307
Peng Y, Tang H, Hu X, Shen Y, Kamel I, Li Z, Hu D (2019) Rectal Cancer Invasiveness: Whole-Lesion Diffusion-Weighted Imaging (DWI) Histogram Analysis by Comparison of Reduced Field-of-View and Conventional DWI Techniques. Sci Rep 9: 18760. https://doi.org/ https://doi.org/10.1038/s41598-019-55059-0
doi: 10.1038/s41598-019-55059-0
pubmed: 31822707
pmcid: 6904447
Yang YS, Qiu YJ, Zheng GH, Gong HP, Ge YQ, Zhang YF, Feng F, Wang YT (2021) High resolution MRI-based radiomic nomogram in predicting perineural invasion in rectal cancer. Cancer Imaging 21: 40. https://doi.org/ https://doi.org/10.1186/s40644-021-00408-4
doi: 10.1186/s40644-021-00408-4
pubmed: 34039436
pmcid: 8157664
Zhang K, Ren Y, Xu S, Lu W, Xie S, Qu J, Wang X, Shen B, Pang P, Cai X, Sun J (2021) A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion/perineural invasion in patients with colorectal cancer. Med Phys 48: 4872–4882. https://doi.org/ https://doi.org/10.1002/mp.15001
doi: 10.1002/mp.15001
pubmed: 34042185