Design, synthesis, crystal structure, and in vitro antibacterial activities of sulfonamide derivatives bearing the 4-aminoquinazoline moiety.

4-Aminoquinazoline Antibacterial activity Antibacterial mechanisms Structure–activity relationship Sulfonamide derivatives Synthesis

Journal

Molecular diversity
ISSN: 1573-501X
Titre abrégé: Mol Divers
Pays: Netherlands
ID NLM: 9516534

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 26 04 2022
accepted: 10 06 2022
medline: 19 6 2023
pubmed: 3 7 2022
entrez: 2 7 2022
Statut: ppublish

Résumé

A total of 66 sulfonamide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized, and their structures were fully characterized by

Identifiants

pubmed: 35779170
doi: 10.1007/s11030-022-10484-8
pii: 10.1007/s11030-022-10484-8
doi:

Substances chimiques

4-aminoquinazoline 0
Oxadiazoles 0
Anti-Bacterial Agents 0
Sulfanilamide 21240MF57M
Sulfonamides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1243-1254

Subventions

Organisme : National Natural Science Foundation of China
ID : 32060626

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Ding M, Wan S, Wu N, Yan Y, Li P, Bao X (2021) Synthesis, structural characterization, and antibacterial and antifungal activities of novel 1,2,4-triazole thioether and thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety. J Agric Food Chem 69:15084–15096. https://doi.org/10.1021/acs.jafc.1c02144
doi: 10.1021/acs.jafc.1c02144 pubmed: 34881871
Shi J, Ding M, Luo N, Wan S, Li P, Li J, Bao X (2020) Design, synthesis, crystal structure, and antimicrobial evaluation of 6-fluoroquinazolinylpiperidinyl-containing 1,2,4-triazole Mannich base derivatives against phytopathogenic bacteria and fungi. J Agric Food Chem 68:9613–9623. https://doi.org/10.1021/acs.jafc.0c01365
doi: 10.1021/acs.jafc.0c01365 pubmed: 32786823
Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324. https://doi.org/10.1111/j.1364-3703.2006.00344.X
doi: 10.1111/j.1364-3703.2006.00344.X pubmed: 20507449
Wan X, Yang J, Ahmed W, Liu Q, Wang Y, Wei L, Ji G (2021) Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. Infect Genet Evol 94:105008. https://doi.org/10.1016/j.meegid.2021.105008
doi: 10.1016/j.meegid.2021.105008 pubmed: 34284137
Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L, Cheng Z, Chen G (2017) A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7:5089. https://doi.org/10.1038/s41598-017-04800-8
doi: 10.1038/s41598-017-04800-8 pubmed: 28698641 pmcid: 5505973
Gottwald TR, Hughes G, Graham JH, Sun X, Riley T (2001) The citrus canker epidemic in Florida: The scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30–34. https://doi.org/10.1094/PHYTO.2001.91.1.30
doi: 10.1094/PHYTO.2001.91.1.30 pubmed: 18944275
Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15. https://doi.org/10.1046/J.1364-3703.2004.00197.X
doi: 10.1046/J.1364-3703.2004.00197.X pubmed: 20565577
Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N (2013) Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 13:186. https://doi.org/10.1186/1471-2180-13-186
doi: 10.1186/1471-2180-13-186 pubmed: 23924281 pmcid: 3750573
Wang T, Wang G, Jia ZH, Pan DL, Zhang JY, Guo ZR (2018) Transcriptome analysis of kiwifruit in response to Pseudomonas syringae pv. actinidiae infection. Int J Mol Sci 19:373. https://doi.org/10.3390/ijms19020373
doi: 10.3390/ijms19020373 pubmed: 29373527 pmcid: 5855595
Yu X, Zhu X, Zhou Y, Li Q, Hu Z, Li T, Tao J, Dou M, Zhang M, Shao Y, Sun R (2019) Discovery of N-aryl-pyridine-4-ones as novel potential agrochemical fungicides and bactericides. J Agric Food Chem 67:13904–13913. https://doi.org/10.1021/acs.jafc.9b06296
doi: 10.1021/acs.jafc.9b06296 pubmed: 31765135
Bagul SD, Rajput JD, Tadavi SK, Bendre RS (2017) Design, synthesis and biological activities of novel 5-isopropyl-2-methylphenolhydrazide-based sulfonamide derivatives. Res Chem Intermed 43:2241–2252. https://doi.org/10.1007/s11164-016-2759-5
doi: 10.1007/s11164-016-2759-5
Al-Mohammed NN, Alias Y, Abdullah Z, Shakir RM, Taha EM, Hamid AA (2013) Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules 18:11978–11995. https://doi.org/10.3390/molecules181011978
doi: 10.3390/molecules181011978 pubmed: 24077176 pmcid: 6270528
Chohan ZH, Rauf A, Naseer MM, Somra MA, Supuran CT (2006) Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones. J Enzyme Inhib Med Chem 21:173–177. https://doi.org/10.1080/14756360500533059
doi: 10.1080/14756360500533059 pubmed: 16789431
Lal J, Gupta SK, Thavaselvam D, Agarwal DD (2013) Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Eur J Med Chem 64:579–588. https://doi.org/10.1016/j.ejmech.2013.03.012
doi: 10.1016/j.ejmech.2013.03.012 pubmed: 23685942
He F, Shi J, Wang Y, Wang S, Chen J, Gan X, Song B, Hu D (2019) Synthesis, antiviral activity, and mechanisms of purine nucleoside derivatives containing a sulfonamide moiety. J Agric Food Chem 67:8459–8467. https://doi.org/10.1021/acs.jafc.9b02681
doi: 10.1021/acs.jafc.9b02681 pubmed: 31339701
Chen Z, Xu W, Liu K, Yang S, Fan H, Bhadury PS, Huang D, Zhang Y (2010) Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules 15:9046–9056. https://doi.org/10.3390/molecules15129046
doi: 10.3390/molecules15129046 pubmed: 21150824 pmcid: 6259578
Ghorab MM, Alsaid MS, El-Gaby MSA, Safwat NA, Elaasser MM, Soliman AM (2016) Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur J Med Chem 124:299–310. https://doi.org/10.1016/j.ejmech.2016.08.060
doi: 10.1016/j.ejmech.2016.08.060 pubmed: 27597407
Thakur A, Manohar S, Gerena CEV, Zayas B, Kumar V, Malhotra SV, Rawat DS (2014) Novel 3,5-bis(arylidiene)-4-piperidone based monocarbonyl analogs of curcumin: Anticancer activity evaluation and mode of action study. Med Chem Commun 5:576–586. https://doi.org/10.1039/C3MD00399J
doi: 10.1039/C3MD00399J
Puccetti L, Fasolis G, Vullo D, Chohan ZH, Scozzafava A, Supuran CT (2005) Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes. Bioorg Med Chem Lett 15:3096–3101. https://doi.org/10.1016/j.bmcl.2005.04.055
doi: 10.1016/j.bmcl.2005.04.055 pubmed: 15908204
Abdel-Aziz AAM, Angeli A, El-Azab AS, Hammouda MEA, El-Sherbeny MA, Supuran CT (2019) Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg Chem 84:260–268. https://doi.org/10.1016/j.bioorg.2018.11.033
doi: 10.1016/j.bioorg.2018.11.033 pubmed: 30508771
Gorantla V, Gundla R, Jadav SS, Anugu SR, Chimakurthy J, Nidasanametla SK, Korupolu R (2017) Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: new anti-inflammatory, anti-oxidant and anti-bacterial agents. New J Chem 41:13516–13532. https://doi.org/10.1039/C7NJ03332J
doi: 10.1039/C7NJ03332J
Das D, Hong J (2019) Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 170:55–72. https://doi.org/10.1016/j.ejmech.2019.03.004
doi: 10.1016/j.ejmech.2019.03.004 pubmed: 30878832
Wang Z, Liu L, Dai H, Si X, Zhang L, Li E, Yang Z, Chao G, Zheng J, Ke Y, Lihong S, Zhang Q, Liu H (2021) Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg Med Chem 43:116265. https://doi.org/10.1016/j.bmc.2021.116265
doi: 10.1016/j.bmc.2021.116265 pubmed: 34192644
Kumar AS, Kudva J, Kumar SM, Vishwanatha U, Kumar V, Naral D (2018) Synthesis, characterization, crystal structure, Hirshfeld interaction and bio-evaluation studies of 4-amino quinazoline sulfonamide derivatives. J Mol Struct 1167:142–153. https://doi.org/10.1016/j.molstruc.2018.04.055
doi: 10.1016/j.molstruc.2018.04.055
Alafeefy AM, Kadi AA, Al-Deeb OA, El-Tahir KEH, Al-Jaber NA (2010) Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur J Med Chem 45:4947–4952. https://doi.org/10.1016/j.ejmech.2010.07.067
doi: 10.1016/j.ejmech.2010.07.067 pubmed: 20817329
Bianco A, Reghellin V, Donnici L, Fenu S, Alvarez R, Baruffa C, Peri F, Pagani M, Abrignani S, Neddermann P, Francesco RD (2012) Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog 8:e1002576. https://doi.org/10.1371/journal.ppat.1002576
doi: 10.1371/journal.ppat.1002576 pubmed: 22412376 pmcid: 3297592
Xu Z, Zhao SJ, Lv ZS, Gao F, Wang Y, Zhang F, Bai L, Deng JL (2019) Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 162:396–406. https://doi.org/10.1016/j.ejmech.2018.11.032
doi: 10.1016/j.ejmech.2018.11.032 pubmed: 30453247
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS (2021) Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 107:104527. https://doi.org/10.1016/j.bioorg.2020.104527
doi: 10.1016/j.bioorg.2020.104527 pubmed: 33317839
Shi J, Luo N, Ding M, Bao X (2020) Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazol-inylpiperidinyl moiety. Chin Chem Lett 31:434–438. https://doi.org/10.1016/j.cclet.2019.06.037
doi: 10.1016/j.cclet.2019.06.037
Fan Z, Shi J, Luo N, Ding M, Bao X (2019) Synthesis, crystal structure, and agricultural antimicrobial evaluation of novel quinazoline thioether derivatives incorporating the 1,2,4-triazolo[4,3-a]pyridine moiety. J Agric Food Chem 67:11598–11606. https://doi.org/10.1021/acs.jafc.9b04733
doi: 10.1021/acs.jafc.9b04733 pubmed: 31560195
Adler P, Teskey CJ, Kaiser D, Holy M, Sitte HH, Maulide N (2019) α-Fluorination of carbonyls with nucleophilic fluorine. Nat Chem 11:329–334. https://doi.org/10.1038/s41557-019-0215-z
doi: 10.1038/s41557-019-0215-z pubmed: 30833720
Wei C, Huang J, Luo Y, Wang S, Wu S, Xing Z, Chen J (2021) Novel amide derivatives containing an imidazo[1,2-a]pyridine moiety: Design, synthesis as potential nematicidal and antibacterial agents. Pestic Biochem Physiol 175:104857. https://doi.org/10.1016/j.pestbp.2021.104857
doi: 10.1016/j.pestbp.2021.104857 pubmed: 33993975
Yi C, Chen J, Wei C, Wu S, Wang S, Hu D, Song B (2020) α-Haloacetophenone and analogues as potential antibacterial agents and nematicides. Bioorg Med Chem Lett 30:126814. https://doi.org/10.1016/j.bmcl.2019.126814
doi: 10.1016/j.bmcl.2019.126814 pubmed: 31740248
Chen JN, Wang XF, Li T, Wu DW, Fu XB, Zhang GJ, Shen XC, Wang HS (2016) Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem 107:12–25. https://doi.org/10.1016/j.ejmech.2015.10.045
doi: 10.1016/j.ejmech.2015.10.045 pubmed: 26560049

Auteurs

Suran Wan (S)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.

Nan Wu (N)

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.

Ya Yan (Y)

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.

Yehui Yang (Y)

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.

Guangmin Tian (G)

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.

Lian An (L)

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.

Xiaoping Bao (X)

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China. baoxp_1980@aliyun.com.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol

Classifications MeSH