A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor.


Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 19 03 2022
accepted: 24 06 2022
revised: 30 05 2022
pubmed: 6 7 2022
medline: 30 8 2022
entrez: 5 7 2022
Statut: ppublish

Résumé

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in China. Glypican-3 (GPC3) is a specific antigen related to HCC, which is widely used in clinical detection as a reliable marker of HCC. In this paper, a highly sensitive homogeneous apatasensor was designed for GPC3 detection based on fluorescence resonance energy transfer (FRET) where the GPC3 aptamer labelled gold carbon dots (AuCDs-GPC3

Identifiants

pubmed: 35788872
doi: 10.1007/s00216-022-04201-5
pii: 10.1007/s00216-022-04201-5
doi:

Substances chimiques

Aptamers, Nucleotide 0
GPC3 protein, human 0
Glypicans 0
graphene oxide 0
Carbon 7440-44-0
Gold 7440-57-5
Graphite 7782-42-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6441-6453

Subventions

Organisme : Open Fund of Guangxi Key Laboratory of Bio-targeting Theranostics
ID : Nos. GXSWBX201902
Organisme : Open Fund of Guangxi Key Laboratory of Bio-targeting Theranostics
ID : GXSWBX201903
Organisme : National Nature Science Foundation of China
ID : Nos. 81760534
Organisme : National Nature Science Foundation of China
ID : 82073607

Informations de copyright

© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Huang JJ, Lok V, Ngai CH, Chu C, Patel HK, Chandraseka VT, et al. Disease burden, risk factors, and recent trends of liver cancer: a global country-level analysis. Liver Cancer. 2021;10(4):330–45. https://doi.org/10.1159/000515304 .
doi: 10.1159/000515304 pubmed: 34414121 pmcid: 8339459
Wang C, Yang L, Liang ZK, Liu YD, Liu SK. Long-term survival and prognostic factors of pulmonary metastasectomy in liver cancer: a systematic review and meta-analysis. World J Surg. 2018;42(7):2153–63. https://doi.org/10.1007/s00268-017-4431-7 .
doi: 10.1007/s00268-017-4431-7 pubmed: 29435629
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, et al. Liquid biopsy in hepatocellular carcinoma: where are we now? Cancers (Basel). 2021;13(9):2274.  https://doi.org/10.3390/cancers13092274 .
Galle PR, Foerster F, Kudo M, Chan SL, Llovet JM, Qin SK, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39(12):2214–29. https://doi.org/10.1111/liv.14223 .
doi: 10.1111/liv.14223 pubmed: 31436873
Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: new trends. J Hepatol. 2020;72(2):250–61. https://doi.org/10.1016/j.jhep.2019.08.025 .
doi: 10.1016/j.jhep.2019.08.025 pubmed: 31954490 pmcid: 6986771
Li N, Spetz MR, Ho MT. The role of glypicans in cancer progression and therapy. J Histochem Cytochem. 2020;68(12):841–62. https://doi.org/10.1369/0022155420933709 .
doi: 10.1369/0022155420933709 pubmed: 32623934 pmcid: 7711243
Chen CL, Huang XM, Ying ZJ, Wu DM, Yu YN, Wang XD, et al. Can glypican-3 be a disease-specific biomarker? Clin Transl Med. 2017;6:18. https://doi.org/10.1186/s40169-017-0146-5 .
doi: 10.1186/s40169-017-0146-5 pubmed: 28510121 pmcid: 5433957
Zhou FB, Shang WT, Yu XL, Tian J. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 2018;38(2):741–67. https://doi.org/10.1002/med.21455 .
doi: 10.1002/med.21455 pubmed: 28621802
Gao W, Tang ZW, Zhang YF, Feng MQ, Qian M, Dimitrov DS, et al. Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and protein synthesis. Nat Commun. 2015;6:6536. https://doi.org/10.1038/ncomms7536 .
doi: 10.1038/ncomms7536 pubmed: 25758784
Ma X, Wang X, Chen M, Li F. Study on a new high affinity anti-glypicans-3 antibody in diagnosis of early hepatocellular carcinoma by differential pulse voltammetry. J Solid State Electrochem. 2017;21(6):1631–7. https://doi.org/10.1007/s10008-017-3535-1 .
doi: 10.1007/s10008-017-3535-1
Yu S, Li ZF, Li JZ, Zhao SM, Wu SG, Liu HJ, et al. Generation of dual functional nanobody-nanoluciferase fusion and its potential in bioluminescence enzyme immunoassay for trace glypican-3 in serum. Sens Actuators B. 2021;336:129717. https://doi.org/10.1016/j.snb.2021.129717 .
doi: 10.1016/j.snb.2021.129717
Xie CM, Tiede C, Zhang XY, Wang CR, Li ZX, Xu X, et al. Development of an affimerantibody combined immunological diagnosis kit for glypican-3. Sci Rep. 2017;7:9608. https://doi.org/10.1038/s41598-017-10083-w .
doi: 10.1038/s41598-017-10083-w pubmed: 28852111 pmcid: 5575301
Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: recent progress and challenges in bioanalysis. Talanta. 2020;220:121436. https://doi.org/10.1016/j.talanta.2020.121436 .
doi: 10.1016/j.talanta.2020.121436 pubmed: 32928438
Bayramoglu G, Ozalp VC, Dincbal U, Arica MY. Fast and sensitive detection of salmonella in milk samples using aptamer-functionalized magnetic silica solid phase and MCM-41-aptamer gate system. ACS Biomater Sci Eng. 2018;4(4):1437–44. https://doi.org/10.1021/acsbiomaterials.8b00018 .
doi: 10.1021/acsbiomaterials.8b00018 pubmed: 33418673
Lu X, Wen X, Fan Z. A sensitive biosensor based on a ferrocene-marked adapter for the fluorescence detection of platelet-derived growth factor BB. J Lumin. 2020;221:117042. https://doi.org/10.1016/j.jlumin.2020.117042 .
doi: 10.1016/j.jlumin.2020.117042
Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941. https://doi.org/10.3390/molecules24050941 .
doi: 10.3390/molecules24050941 pmcid: 6429292
Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem. 2018;410(5):1453–62. https://doi.org/10.1007/s00216-017-0786-8 .
doi: 10.1007/s00216-017-0786-8 pubmed: 29199352
Wu LL, Sedgwick AC, Sun XL, Bull SD, He XP, James TD. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res. 2019;52(9):2582–97. https://doi.org/10.1021/acs.accounts.9b00302 .
doi: 10.1021/acs.accounts.9b00302 pubmed: 31460742 pmcid: 7007013
Guan QH, Li N, Shi LL, Yu CY, Gao XH, Yang JP, et al. Aggregation-induced emission fluorophore-based molecular beacon for differentiating tumor and normal cells by detecting the specific and false-positive signals. ACS Biomater Sci Eng. 2019;5(7):3618–30. https://doi.org/10.1021/acsbiomaterials.9b00627 .
doi: 10.1021/acsbiomaterials.9b00627 pubmed: 33405743
Li D, Yuan X, Li CN, Luo YH, Jiang ZL. A novel fluorescence aptamer biosensor for trace Pb(II) based on gold-doped carbon dots and DNAzyme synergetic catalytic amplification. J Lumin. 2020;221:117056.  https://doi.org/10.1016/j.jlumin.2020.117056 .
Cao DX, Liu ZQ, Verwilst P, Koo S, Jangjili P, Kim JS, et al. Coumarin-based small-molecule fluorescent chemosensors. Chem Rev. 2019;119(18):10403–519. https://doi.org/10.1021/acs.chemrev.9b00145 .
doi: 10.1021/acs.chemrev.9b00145 pubmed: 31314507
Cheng D, Pan Y, Wang L, Zeng ZB, Yuan L, Zhang XB, et al. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J Am Chem Soc. 2017;139(1):285–92. https://doi.org/10.1021/jacs.6b10508 .
doi: 10.1021/jacs.6b10508 pubmed: 27996249
Gong PW, Sun L, Wang F, Liu XC, Yan ZQ, Wang MZ, et al. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J. 2019;356:994–1002. https://doi.org/10.1016/j.cej.2018.09.100 .
doi: 10.1016/j.cej.2018.09.100
He L, Lu DQ, Liang H, Xie ST, Luo C, Hu MM, et al. Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano. 2017;11(4):4060–6. https://doi.org/10.1021/acsnano.7b00725 .
doi: 10.1021/acsnano.7b00725 pubmed: 28328200 pmcid: 5519286
Amiri M, Nekoueian K, Saberi RS. Graphene-family materials in electrochemical aptasensors. Anal Bioanal Chem. 2021;413(3):673–99. https://doi.org/10.1007/s00216-020-02915-y .
doi: 10.1007/s00216-020-02915-y pubmed: 32939567
Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of graphene oxide and its biomedical applications. Rev Solid State Mater Sci. 2015;40(5):291–315. https://doi.org/10.1080/10408436.2014.1002604 .
doi: 10.1080/10408436.2014.1002604
Zhou Y, Jing X, Chen Y. Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. J Mater Chem B. 2017;5(32):6451–70. https://doi.org/10.1039/c7tb00680b .
doi: 10.1039/c7tb00680b pubmed: 32264411
Mao JN, Hong B, Chen HD, Gao MH, Xu JC, Han YB, et al. Highly improved ethanol gas response of n-type alpha-Fe2O3 bunched nanowires sensor with high-valence donor-doping. J Alloys Compd. 2020;827:154248. https://doi.org/10.1016/j.jallcom.2020.154248 .
doi: 10.1016/j.jallcom.2020.154248
Ge W, Zhang XH, Ge XT, Liu K. Synthesis of alpha-Fe2O3/SiO2 nanocomposites for the enhancement of acetone sensing performance. Mater Res Bull. 2021;141:111379. https://doi.org/10.1016/j.materresbull.2021.111379 .
doi: 10.1016/j.materresbull.2021.111379
Hu LY, Niu CG, Wang XY, Huang DW, Zhang L, Zeng GM. Magnetic separate “turn-on” fluorescent biosensor for bisphenol a based on magnetic oxidation graphene. Talanta. 2017;168:196–202. https://doi.org/10.1016/j.talanta.2017.03.055 .
doi: 10.1016/j.talanta.2017.03.055 pubmed: 28391842
Ma L, Guo T, Pan SL, Zhang YH. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Microchim Acta. 2018;185(10):487. https://doi.org/10.1007/s00604-018-3023-z .
doi: 10.1007/s00604-018-3023-z
Li MK, Hu LY, Niu CG, Huang DW, Zeng GM. A fluorescent DNA based probe for Hg(II) based on thymine-Hg(II)-thymine interaction and enrichment via magnetized graphene oxide. Microchim Acta. 2018;185(3):207. https://doi.org/10.1007/s00604-018-2689-6 .
doi: 10.1007/s00604-018-2689-6
Tran CV, La DD, Hoai PNT, Ninh H, Hong PNT, Vu TH, et al. New TiO2-doped Cu-Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater. J Hazard Mater. 2021;420:126636.  https://doi.org/10.1016/j.jhazmat.2021.126636 .
Meijer MS, Rojas-Gutierrez PA, Busko D, Howard IA, Frenze F, Wurth C, et al. Absolute upconversion quantum yields of blue-emitting LiYF4: Yb3+, Tm3+upconverting nanoparticles. Phys Chem Chem Phys. 2018;20(35):22556–62. https://doi.org/10.1039/c8cp03935f .
doi: 10.1039/c8cp03935f pubmed: 30155527
Cao CY, Wei P, Li RH, Zhong YP, Li X, Xue FF, et al. Ribosomal RNA-selective light-up fluorescent probe for rapidly imaging the nucleolus in live cells. Acs Sensors. 2019;4(5):1409–16. https://doi.org/10.1021/acssensors.9b00464 .
doi: 10.1021/acssensors.9b00464 pubmed: 31017390
Gudimella KK, Appidi T, Wu HF, Battula V, Jogdand A, Rengan AK, et al. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf B. 2021;197:111362. https://doi.org/10.1016/j.colsurfb.2020.111362 .
doi: 10.1016/j.colsurfb.2020.111362
Bouche M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP. Recent advances in molecular imaging with gold nanoparticles. Bioconjug Chem. 2020;31(2):303–14. https://doi.org/10.1021/acs.bioconjchem.9b00669 .
doi: 10.1021/acs.bioconjchem.9b00669 pubmed: 31682405
Mirau PA, Smith JE, Chavez JL, Hagen JA, Kelley-Loughnane N, Naik R. Structured DNA aptamer interactions with gold nanoparticles. Langmuir. 2018;34(5):2139–46. https://doi.org/10.1021/acs.langmuir.7b02449 .
doi: 10.1021/acs.langmuir.7b02449 pubmed: 29283584
Nozaki T, Kakuda T, Pottathara YB, Kawasaki H. A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochem Photobiol Sci. 2019;18(5):1235–41. https://doi.org/10.1039/c9pp00035f .
doi: 10.1039/c9pp00035f pubmed: 30843904
Zhao ML, Dong LL, Liu Z, Yang SH, Wu WZ, Lin J. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. Quant Imaging Med Surg. 2018;8(2):151–60. https://doi.org/10.21037/qims.2018.01.09 .
doi: 10.21037/qims.2018.01.09 pubmed: 29675356 pmcid: 5891685
Li SJ, Wang YN, Mu XQ, Sheng W, Wang JP, Wang S. Two fluorescence quenching immunochromatographic assays based on carbon dots and quantum dots as donor probes for the determination of enrofloxacin. Anal Methods. 2019;11(18):2378–84. https://doi.org/10.1039/c9ay00154a .
doi: 10.1039/c9ay00154a
Figueiredo NM, Carvalho NJM, Cavaleiro A. An XPS study of Au alloyed Al-O sputtered coatings. Appl Surf Sci. 2011;257(13):5793–8. https://doi.org/10.1016/j.apsusc.2011.01.104 .
doi: 10.1016/j.apsusc.2011.01.104
Cheng X, Cen Y, Xu GH, Wei FD, Shi ML, Xu XM, et al. Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Microchim Acta. 2018;185(2):144.  https://doi.org/10.1007/s00604-018-2683-z .
Nair RV, Chandran PR, Mohamed AP, Pillai S. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. Anal Chim Acta. 2021;1181:338893.  https://doi.org/10.1016/j.aca.2021.338893 .
Heidari F, Mohajeri N, Zarghami N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys. 2022;80(1):75–88. https://doi.org/10.1007/s12013-021-01034-4 .
doi: 10.1007/s12013-021-01034-4 pubmed: 34716880
Sadighian S, Bayat N, Najaflou S, Kermanian M, Hamidi M. Preparation of graphene oxide/Fe3O4 nanocomposite as a potential magnetic nanocarrier and MRI contrast agent. ChemistrySelect. 2021;6(12):2862–8. https://doi.org/10.1002/slct.202100195 .
doi: 10.1002/slct.202100195
Tufa LT, Oh S, Tran VT, Kim J, Jeong KJ, Park TJ, et al. Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochim Acta. 2018;290:369–77. https://doi.org/10.1016/j.electacta.2018.09.108 .
doi: 10.1016/j.electacta.2018.09.108
Chen JJ, Xie CM, Wang CR, Wan Y, Dong ZN, Li M, et al. Development of a time-resolved fluorescence immunoassay for the diagnosis of hepatocellular carcinoma based on the detection of glypican-3. J Fluoresc. 2017;27(4):1479–85. https://doi.org/10.1007/s10895-017-2087-1 .
doi: 10.1007/s10895-017-2087-1 pubmed: 28429175
Tahon AM, El-Ghanam MZ, Zaky S, Emran TM, Bersy AM, El-Raey F, et al. Significance of glypican-3 in early detection of hepatocellular carcinoma in cirrhotic patients. J Gastrointest Cancer. 2019;50(3):434–41. https://doi.org/10.1007/s12029-018-0095-2 .
doi: 10.1007/s12029-018-0095-2 pubmed: 29623600

Auteurs

Guiyin Li (G)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China.

Wei Chen (W)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

Danhong Mi (D)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

Bo Wang (B)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

HaiMei Li (H)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

Guangxiong Wu (G)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

Ping Ding (P)

Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, People's Republic of China. pingshui@csu.edu.cn.

Jintao Liang (J)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China. dxljt@guet.edu.cn.

Zhide Zhou (Z)

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China. zzdlgy@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH