Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
09
08
2021
accepted:
03
05
2022
pubmed:
6
7
2022
medline:
16
7
2022
entrez:
5
7
2022
Statut:
ppublish
Résumé
Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.
Identifiants
pubmed: 35789323
doi: 10.1038/s41588-022-01089-w
pii: 10.1038/s41588-022-01089-w
pmc: PMC9279159
mid: EMS144747
doi:
Substances chimiques
Chromatin
0
Zebrafish Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1037-1050Subventions
Organisme : NHGRI NIH HHS
ID : U24 HG002659
Pays : United States
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R015457/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1102/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_EX_MR/S300007/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 106955
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : P61715
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1605/10
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. Crown.
Références
Patton, E. E. & Tobin, D. M. Spotlight on zebrafish: the next wave of translational research. Dis. Models Mechanisms 12, dmm039370 (2019).
doi: 10.1242/dmm.039370
Howe, D. G. et al. The zebrafish model organism database: new support for human disease models, mutation details, gene expression phenotypes and searching. Nucleic Acids Res. 45, D758–D768 (2017).
pubmed: 27899582
doi: 10.1093/nar/gkw1116
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).
pubmed: 23594743
pmcid: 3703927
doi: 10.1038/nature12111
Bogdanovic, O. et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053 (2012).
pubmed: 22593555
pmcid: 3460198
doi: 10.1101/gr.134833.111
Murphy, P. J., Wu, S. F., James, C. R., Wike, C. L. & Cairns, B. R. Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming. Cell 172, 993–1006.e13 (2018).
pubmed: 29456083
doi: 10.1016/j.cell.2018.01.022
Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).
pubmed: 20336069
pmcid: 2874748
doi: 10.1038/nature08866
Haberle, V. et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507, 381–385 (2014).
pubmed: 24531765
pmcid: 4820030
doi: 10.1038/nature12974
Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).
pubmed: 22422859
pmcid: 3547538
doi: 10.1126/science.1215704
Nepal, C. et al. Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat. Commun. 11, 168 (2020).
pubmed: 31924754
pmcid: 6954239
doi: 10.1038/s41467-019-13687-0
Zhao, L., Wang, L., Chi, C., Lan, W. & Su, Y. The emerging roles of phosphatases in Hedgehog pathway. Cell Commun. Signal. 15, 35 (2017).
pubmed: 28931407
pmcid: 5607574
doi: 10.1186/s12964-017-0191-0
Bogdanović, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–426 (2016).
pubmed: 26928226
pmcid: 5912259
doi: 10.1038/ng.3522
Jiang, L. et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153, 773–784 (2013).
pubmed: 23663777
pmcid: 4081501
doi: 10.1016/j.cell.2013.04.041
Potok, M. E., Nix, D. A., Parnell, T. J. & Cairns, B. R. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772 (2013).
pubmed: 23663776
pmcid: 4030421
doi: 10.1016/j.cell.2013.04.030
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923
pmcid: 4430369
doi: 10.1038/nbt.3192
Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).
pubmed: 17387144
pmcid: 1855176
doi: 10.1101/gr.6086307
Gehrig, J. et al. Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nat. Methods 6, 911–916 (2009).
pubmed: 19898487
doi: 10.1038/nmeth.1396
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2010).
pubmed: 21160473
pmcid: 4445674
doi: 10.1038/nature09692
Spieler, D. et al. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 24, 592–603 (2014).
pubmed: 24642863
pmcid: 3975059
doi: 10.1101/gr.166751.113
Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
pubmed: 25693564
pmcid: 4515363
doi: 10.1038/nature14222
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563
pmcid: 4530010
doi: 10.1038/nature14248
Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).
pubmed: 21177976
pmcid: 3142569
doi: 10.1126/science.1196914
Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).
pubmed: 21177974
pmcid: 3192495
doi: 10.1126/science.1198374
Yang, H. et al. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature 588, 337–343 (2020).
pubmed: 33239788
pmcid: 8183574
doi: 10.1038/s41586-020-2962-9
Tan, H., Onichtchouk, D. & Winata, C. DANIO-CODE: toward an encyclopedia of DNA elements in zebrafish. Zebrafish 13, 54–60 (2016).
pubmed: 26671609
pmcid: 4742988
doi: 10.1089/zeb.2015.1179
Hortenhuber, M., Mukarram, A. K., Stoiber, M. H., Brown, J. B. & Daub, C. O. *-DCC: A platform to collect, annotate, and explore a large variety of sequencing experiments. GigaScience 9, giaa024 (2020).
pubmed: 32170312
pmcid: 7069921
doi: 10.1093/gigascience/giaa024
Encode Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).
doi: 10.1038/s41586-020-2493-4
The FANTOM Consortium and the RIKEN PMI and CIST. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
doi: 10.1038/nature13182
Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU epigenome browser update 2019. Nucleic Acids Res. 47, W158–W165 (2019).
pubmed: 31165883
pmcid: 6602459
doi: 10.1093/nar/gkz348
McGarvey, A, C. et al. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. Cell Genom. 2, 100083 (2022).
doi: 10.1016/j.xgen.2021.100083
Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577–91 (2012).
pubmed: 22110045
pmcid: 3290793
doi: 10.1101/gr.133009.111
White, R. J. et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 6, e30860 (2017).
pubmed: 29144233
pmcid: 5690287
doi: 10.7554/eLife.30860
Lawson, N. D. et al. An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes. eLife 9, e55792 (2020).
pubmed: 32831172
pmcid: 7486121
doi: 10.7554/eLife.55792
El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).
pubmed: 30944477
pmcid: 6707827
doi: 10.1038/s41586-019-1064-z
The FANTOM Consortium and Riken Omics Science Center The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 41, 553–562 (2009).
doi: 10.1038/ng.375
Balwierz, P. J. et al. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res. 24, 869–884 (2014).
pubmed: 24515121
pmcid: 4009616
doi: 10.1101/gr.169508.113
Astone, M. et al. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci. Rep. 8, 10189 (2018).
pubmed: 29976931
pmcid: 6033906
doi: 10.1038/s41598-018-27657-x
Chae, H. D., Yun, J., Bang, Y. J. & Shin, D. Y. Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions. Oncogene 23, 4084–4088 (2004).
pubmed: 15064732
doi: 10.1038/sj.onc.1207482
Hu, Q., Lu, J. F., Luo, R., Sen, S. & Maity, S. N. Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle. Nucleic Acids Res. 34, 6272–6285 (2006).
pubmed: 17098936
pmcid: 1693888
doi: 10.1093/nar/gkl801
Powers, S. E. et al. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137, 249–259 (2010).
pubmed: 20040491
pmcid: 2799159
doi: 10.1242/dev.040782
Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).
pubmed: 33237311
doi: 10.1093/nar/gkaa1074
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
doi: 10.1038/nmeth.2688
Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
pubmed: 22373907
pmcid: 3577932
doi: 10.1038/nmeth.1906
Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).
pubmed: 29120462
pmcid: 5945550
doi: 10.1038/nprot.2017.124
Fu, Y., Sinha, M., Peterson, C. L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008).
pubmed: 18654629
pmcid: 2453330
doi: 10.1371/journal.pgen.1000138
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
pubmed: 24670763
pmcid: 5215096
doi: 10.1038/nature12787
Crispatzu, G. et al. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat. Commun. 12, 4344 (2021).
pubmed: 34272393
pmcid: 8285398
doi: 10.1038/s41467-021-24641-4
Tena, J. J. et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24, 1075–1085 (2014).
pubmed: 24709821
pmcid: 4079964
doi: 10.1101/gr.163915.113
Raj, B. et al. Emergence of neuronal diversity during vertebrate brain development. Neuron 108, 1058–1074.e6 (2020).
pubmed: 33068532
pmcid: 8286448
doi: 10.1016/j.neuron.2020.09.023
Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).
pubmed: 23828890
pmcid: 3785061
doi: 10.1126/science.1237905
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).
pubmed: 19056941
pmcid: 2833333
doi: 10.1126/science.1162228
Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).
pubmed: 19056940
pmcid: 2692996
doi: 10.1126/science.1162253
Buratowski, S. Transcription. Gene expression–where to start? Science 322, 1804–1805 (2008).
pubmed: 19095933
pmcid: 3516868
doi: 10.1126/science.1168805
Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).
pubmed: 28874668
pmcid: 5585340
doi: 10.1038/s41467-017-00524-5
Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep. 24, 1–10.e4 (2018).
pubmed: 29972771
pmcid: 6047509
doi: 10.1016/j.celrep.2018.06.003
Wike, C. L. et al. Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res. 31, 981–994 (2021).
pubmed: 34006569
pmcid: 8168589
doi: 10.1101/gr.269860.120
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
pubmed: 23582322
pmcid: 3653129
doi: 10.1016/j.cell.2013.03.035
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843
doi: 10.1016/j.cell.2013.09.053
Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).
pubmed: 25635462
pmcid: 4313353
doi: 10.1016/j.cell.2015.01.006
Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).
pubmed: 22682255
pmcid: 3372872
doi: 10.1016/j.cell.2012.04.029
Crollius, H. R., Gilardi-Hebenstreit, P., Torbey, P. & Clément, Y. Enhancer-gene maps in the human and zebrafish genomes using evolutionary linkage conservation. Nucleic Acids Res. 48, 2357–2371 (2020).
pubmed: 31943068
pmcid: 7049698
doi: 10.1093/nar/gkz1199
Engstrom, P. G., Ho Sui, S. J., Drivenes, O., Becker, T. S. & Lenhard, B. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res. 17, 1898–1908 (2007).
pubmed: 17989259
pmcid: 2099597
doi: 10.1101/gr.6669607
Pradeepa, M. M. et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681–686 (2016).
pubmed: 27089178
pmcid: 4886833
doi: 10.1038/ng.3550
Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).
pubmed: 31701148
Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature 468, 911–920 (2010).
pubmed: 21164479
pmcid: 3967874
doi: 10.1038/nature09645
Briggs, J. A. et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360, eaar5780 (2018).
pubmed: 29700227
pmcid: 6038144
doi: 10.1126/science.aar5780
Farnsworth, D. R., Saunders, L. M. & Miller, A. C. A single-cell transcriptome atlas for zebrafish development. Dev. Biol. 459, 100–108 (2020).
pubmed: 31782996
doi: 10.1016/j.ydbio.2019.11.008
Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).
pubmed: 29700225
pmcid: 6247916
doi: 10.1126/science.aar3131
Housden, B. E. et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18, 24–40 (2016).
pubmed: 27795562
pmcid: 5206767
doi: 10.1038/nrg.2016.118
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
pubmed: 18267078
doi: 10.1016/j.cell.2007.12.033
Celniker, S. E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).
pubmed: 19536255
pmcid: 2843545
doi: 10.1038/459927a
Kodama, Y., Shumway, M. & Leinonen, R. International Nucleotide Sequence Database Collaboration The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).
pubmed: 22009675
doi: 10.1093/nar/gkr854
Ruzicka, L. et al. The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res. 47, D867–D873 (2019).
pubmed: 30407545
doi: 10.1093/nar/gky1090
Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360–364 (2013).
pubmed: 24056933
pmcid: 3925760
doi: 10.1038/nature12632
Etard, C. et al. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol. 16, 267 (2015).
pubmed: 26631063
pmcid: 4668643
doi: 10.1186/s13059-015-0825-8
Meier, M. et al. Cohesin facilitates zygotic genome activation in zebrafish. Development 145, dev156521 (2017).
doi: 10.1242/dev.156521
Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).
pubmed: 30464347
pmcid: 6292497
doi: 10.1038/s41586-018-0734-6
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).
pubmed: 27560171
pmcid: 5032908
doi: 10.1038/nprot.2016.095
Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaiyan, A. M. & Iyer, M. K. TACO produces robust multisample transcriptome assemblies from RNA-seq. Nat. Methods 14, 68–70 (2016).
pubmed: 27869815
pmcid: 5199618
doi: 10.1038/nmeth.4078
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
pubmed: 31249361
pmcid: 6597582
doi: 10.1038/s41598-019-45839-z
Haberle, V., Forrest, A. R. R., Hayashizaki, Y., Carninci, P. & Lenhard, B. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res. 43, e51 (2015).
pubmed: 25653163
pmcid: 4417143
doi: 10.1093/nar/gkv054
Balwierz, P. J. et al. Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biol. 10, R79 (2009).
pubmed: 19624849
pmcid: 2728533
doi: 10.1186/gb-2009-10-7-r79
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
pubmed: 29155950
doi: 10.1093/nar/gkx1098
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250
pmcid: 187518
Frith, M. C. & Kawaguchi, R. Split-alignment of genomes finds orthologies more accurately. Genome Biol. 16, 106 (2015).
pubmed: 25994148
pmcid: 4464727
doi: 10.1186/s13059-015-0670-9
Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).
pubmed: 10964570
doi: 10.1006/jmbi.2000.4042
Arnold, P., Erb, I., Pachkov, M., Molina, N. & van Nimwegen, E. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics 28, 487–494 (2012).
pubmed: 22334039
doi: 10.1093/bioinformatics/btr695
Irimia, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367 (2012).
pubmed: 22722344
pmcid: 3514665
doi: 10.1101/gr.139725.112
de la Calle Mustienes, E., Gómez-Skarmeta, J. L. & Bogdanović, O. Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos. Genomics Data 6, 7–9 (2015).
pubmed: 26697317
pmcid: 4664660
doi: 10.1016/j.gdata.2015.07.020
Nepal, C. et al. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res. 23, 1938–1950 (2013).
pubmed: 24002785
pmcid: 3814893
doi: 10.1101/gr.153692.112
Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic ddespite rapid sequence evolution. Cell 147, 1537–1550 (2011).
pubmed: 22196729
pmcid: 3376356
doi: 10.1016/j.cell.2011.11.055
Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).
doi: 10.1214/11-AOAS466
Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).
pubmed: 26314830
pmcid: 4617971
doi: 10.1101/gr.192294.115
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Chen, Z. et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 5, eaav0547 (2019).
pubmed: 31249862
pmcid: 6594761
doi: 10.1126/sciadv.aav0547
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
doi: 10.1007/BF01386390
Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).
pubmed: 32728240
pmcid: 7398618
doi: 10.1038/s41586-020-2093-3
Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).
pubmed: 21427719
doi: 10.1038/ncomms1248
Zhang, T., Zhang, Z., Dong, Q., Xiong, J. & Zhu, B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 21, 45 (2020).
pubmed: 32085783
pmcid: 7035716
doi: 10.1186/s13059-020-01957-w