Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
07 2022
Historique:
received: 09 08 2021
accepted: 03 05 2022
pubmed: 6 7 2022
medline: 16 7 2022
entrez: 5 7 2022
Statut: ppublish

Résumé

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.

Identifiants

pubmed: 35789323
doi: 10.1038/s41588-022-01089-w
pii: 10.1038/s41588-022-01089-w
pmc: PMC9279159
mid: EMS144747
doi:

Substances chimiques

Chromatin 0
Zebrafish Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1037-1050

Subventions

Organisme : NHGRI NIH HHS
ID : U24 HG002659
Pays : United States
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R015457/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1102/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_EX_MR/S300007/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 106955
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : P61715
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1605/10
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. Crown.

Références

Patton, E. E. & Tobin, D. M. Spotlight on zebrafish: the next wave of translational research. Dis. Models Mechanisms 12, dmm039370 (2019).
doi: 10.1242/dmm.039370
Howe, D. G. et al. The zebrafish model organism database: new support for human disease models, mutation details, gene expression phenotypes and searching. Nucleic Acids Res. 45, D758–D768 (2017).
pubmed: 27899582 doi: 10.1093/nar/gkw1116
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).
pubmed: 23594743 pmcid: 3703927 doi: 10.1038/nature12111
Bogdanovic, O. et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053 (2012).
pubmed: 22593555 pmcid: 3460198 doi: 10.1101/gr.134833.111
Murphy, P. J., Wu, S. F., James, C. R., Wike, C. L. & Cairns, B. R. Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming. Cell 172, 993–1006.e13 (2018).
pubmed: 29456083 doi: 10.1016/j.cell.2018.01.022
Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).
pubmed: 20336069 pmcid: 2874748 doi: 10.1038/nature08866
Haberle, V. et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507, 381–385 (2014).
pubmed: 24531765 pmcid: 4820030 doi: 10.1038/nature12974
Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).
pubmed: 22422859 pmcid: 3547538 doi: 10.1126/science.1215704
Nepal, C. et al. Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat. Commun. 11, 168 (2020).
pubmed: 31924754 pmcid: 6954239 doi: 10.1038/s41467-019-13687-0
Zhao, L., Wang, L., Chi, C., Lan, W. & Su, Y. The emerging roles of phosphatases in Hedgehog pathway. Cell Commun. Signal. 15, 35 (2017).
pubmed: 28931407 pmcid: 5607574 doi: 10.1186/s12964-017-0191-0
Bogdanović, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–426 (2016).
pubmed: 26928226 pmcid: 5912259 doi: 10.1038/ng.3522
Jiang, L. et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153, 773–784 (2013).
pubmed: 23663777 pmcid: 4081501 doi: 10.1016/j.cell.2013.04.041
Potok, M. E., Nix, D. A., Parnell, T. J. & Cairns, B. R. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772 (2013).
pubmed: 23663776 pmcid: 4030421 doi: 10.1016/j.cell.2013.04.030
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923 pmcid: 4430369 doi: 10.1038/nbt.3192
Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).
pubmed: 17387144 pmcid: 1855176 doi: 10.1101/gr.6086307
Gehrig, J. et al. Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nat. Methods 6, 911–916 (2009).
pubmed: 19898487 doi: 10.1038/nmeth.1396
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2010).
pubmed: 21160473 pmcid: 4445674 doi: 10.1038/nature09692
Spieler, D. et al. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 24, 592–603 (2014).
pubmed: 24642863 pmcid: 3975059 doi: 10.1101/gr.166751.113
Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
pubmed: 25693564 pmcid: 4515363 doi: 10.1038/nature14222
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563 pmcid: 4530010 doi: 10.1038/nature14248
Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).
pubmed: 21177976 pmcid: 3142569 doi: 10.1126/science.1196914
Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).
pubmed: 21177974 pmcid: 3192495 doi: 10.1126/science.1198374
Yang, H. et al. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature 588, 337–343 (2020).
pubmed: 33239788 pmcid: 8183574 doi: 10.1038/s41586-020-2962-9
Tan, H., Onichtchouk, D. & Winata, C. DANIO-CODE: toward an encyclopedia of DNA elements in zebrafish. Zebrafish 13, 54–60 (2016).
pubmed: 26671609 pmcid: 4742988 doi: 10.1089/zeb.2015.1179
Hortenhuber, M., Mukarram, A. K., Stoiber, M. H., Brown, J. B. & Daub, C. O. *-DCC: A platform to collect, annotate, and explore a large variety of sequencing experiments. GigaScience 9, giaa024 (2020).
pubmed: 32170312 pmcid: 7069921 doi: 10.1093/gigascience/giaa024
Encode Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).
doi: 10.1038/s41586-020-2493-4
The FANTOM Consortium and the RIKEN PMI and CIST. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
doi: 10.1038/nature13182
Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU epigenome browser update 2019. Nucleic Acids Res. 47, W158–W165 (2019).
pubmed: 31165883 pmcid: 6602459 doi: 10.1093/nar/gkz348
McGarvey, A, C. et al. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. Cell Genom. 2, 100083 (2022).
doi: 10.1016/j.xgen.2021.100083
Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577–91 (2012).
pubmed: 22110045 pmcid: 3290793 doi: 10.1101/gr.133009.111
White, R. J. et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 6, e30860 (2017).
pubmed: 29144233 pmcid: 5690287 doi: 10.7554/eLife.30860
Lawson, N. D. et al. An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes. eLife 9, e55792 (2020).
pubmed: 32831172 pmcid: 7486121 doi: 10.7554/eLife.55792
El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).
pubmed: 30944477 pmcid: 6707827 doi: 10.1038/s41586-019-1064-z
The FANTOM Consortium and Riken Omics Science Center The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 41, 553–562 (2009).
doi: 10.1038/ng.375
Balwierz, P. J. et al. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res. 24, 869–884 (2014).
pubmed: 24515121 pmcid: 4009616 doi: 10.1101/gr.169508.113
Astone, M. et al. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci. Rep. 8, 10189 (2018).
pubmed: 29976931 pmcid: 6033906 doi: 10.1038/s41598-018-27657-x
Chae, H. D., Yun, J., Bang, Y. J. & Shin, D. Y. Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions. Oncogene 23, 4084–4088 (2004).
pubmed: 15064732 doi: 10.1038/sj.onc.1207482
Hu, Q., Lu, J. F., Luo, R., Sen, S. & Maity, S. N. Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle. Nucleic Acids Res. 34, 6272–6285 (2006).
pubmed: 17098936 pmcid: 1693888 doi: 10.1093/nar/gkl801
Powers, S. E. et al. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 137, 249–259 (2010).
pubmed: 20040491 pmcid: 2799159 doi: 10.1242/dev.040782
Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).
pubmed: 33237311 doi: 10.1093/nar/gkaa1074
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
pubmed: 22373907 pmcid: 3577932 doi: 10.1038/nmeth.1906
Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).
pubmed: 29120462 pmcid: 5945550 doi: 10.1038/nprot.2017.124
Fu, Y., Sinha, M., Peterson, C. L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008).
pubmed: 18654629 pmcid: 2453330 doi: 10.1371/journal.pgen.1000138
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
pubmed: 24670763 pmcid: 5215096 doi: 10.1038/nature12787
Crispatzu, G. et al. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat. Commun. 12, 4344 (2021).
pubmed: 34272393 pmcid: 8285398 doi: 10.1038/s41467-021-24641-4
Tena, J. J. et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24, 1075–1085 (2014).
pubmed: 24709821 pmcid: 4079964 doi: 10.1101/gr.163915.113
Raj, B. et al. Emergence of neuronal diversity during vertebrate brain development. Neuron 108, 1058–1074.e6 (2020).
pubmed: 33068532 pmcid: 8286448 doi: 10.1016/j.neuron.2020.09.023
Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).
pubmed: 23828890 pmcid: 3785061 doi: 10.1126/science.1237905
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).
pubmed: 19056941 pmcid: 2833333 doi: 10.1126/science.1162228
Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).
pubmed: 19056940 pmcid: 2692996 doi: 10.1126/science.1162253
Buratowski, S. Transcription. Gene expression–where to start? Science 322, 1804–1805 (2008).
pubmed: 19095933 pmcid: 3516868 doi: 10.1126/science.1168805
Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).
pubmed: 28874668 pmcid: 5585340 doi: 10.1038/s41467-017-00524-5
Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep. 24, 1–10.e4 (2018).
pubmed: 29972771 pmcid: 6047509 doi: 10.1016/j.celrep.2018.06.003
Wike, C. L. et al. Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res. 31, 981–994 (2021).
pubmed: 34006569 pmcid: 8168589 doi: 10.1101/gr.269860.120
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
pubmed: 23582322 pmcid: 3653129 doi: 10.1016/j.cell.2013.03.035
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
pubmed: 24119843 doi: 10.1016/j.cell.2013.09.053
Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).
pubmed: 25635462 pmcid: 4313353 doi: 10.1016/j.cell.2015.01.006
Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).
pubmed: 22682255 pmcid: 3372872 doi: 10.1016/j.cell.2012.04.029
Crollius, H. R., Gilardi-Hebenstreit, P., Torbey, P. & Clément, Y. Enhancer-gene maps in the human and zebrafish genomes using evolutionary linkage conservation. Nucleic Acids Res. 48, 2357–2371 (2020).
pubmed: 31943068 pmcid: 7049698 doi: 10.1093/nar/gkz1199
Engstrom, P. G., Ho Sui, S. J., Drivenes, O., Becker, T. S. & Lenhard, B. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res. 17, 1898–1908 (2007).
pubmed: 17989259 pmcid: 2099597 doi: 10.1101/gr.6669607
Pradeepa, M. M. et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681–686 (2016).
pubmed: 27089178 pmcid: 4886833 doi: 10.1038/ng.3550
Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).
pubmed: 31701148
Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature 468, 911–920 (2010).
pubmed: 21164479 pmcid: 3967874 doi: 10.1038/nature09645
Briggs, J. A. et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360, eaar5780 (2018).
pubmed: 29700227 pmcid: 6038144 doi: 10.1126/science.aar5780
Farnsworth, D. R., Saunders, L. M. & Miller, A. C. A single-cell transcriptome atlas for zebrafish development. Dev. Biol. 459, 100–108 (2020).
pubmed: 31782996 doi: 10.1016/j.ydbio.2019.11.008
Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).
pubmed: 29700225 pmcid: 6247916 doi: 10.1126/science.aar3131
Housden, B. E. et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18, 24–40 (2016).
pubmed: 27795562 pmcid: 5206767 doi: 10.1038/nrg.2016.118
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
pubmed: 18267078 doi: 10.1016/j.cell.2007.12.033
Celniker, S. E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).
pubmed: 19536255 pmcid: 2843545 doi: 10.1038/459927a
Kodama, Y., Shumway, M. & Leinonen, R. International Nucleotide Sequence Database Collaboration The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).
pubmed: 22009675 doi: 10.1093/nar/gkr854
Ruzicka, L. et al. The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res. 47, D867–D873 (2019).
pubmed: 30407545 doi: 10.1093/nar/gky1090
Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360–364 (2013).
pubmed: 24056933 pmcid: 3925760 doi: 10.1038/nature12632
Etard, C. et al. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol. 16, 267 (2015).
pubmed: 26631063 pmcid: 4668643 doi: 10.1186/s13059-015-0825-8
Meier, M. et al. Cohesin facilitates zygotic genome activation in zebrafish. Development 145, dev156521 (2017).
doi: 10.1242/dev.156521
Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).
pubmed: 30464347 pmcid: 6292497 doi: 10.1038/s41586-018-0734-6
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).
pubmed: 27560171 pmcid: 5032908 doi: 10.1038/nprot.2016.095
Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaiyan, A. M. & Iyer, M. K. TACO produces robust multisample transcriptome assemblies from RNA-seq. Nat. Methods 14, 68–70 (2016).
pubmed: 27869815 pmcid: 5199618 doi: 10.1038/nmeth.4078
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
pubmed: 31249361 pmcid: 6597582 doi: 10.1038/s41598-019-45839-z
Haberle, V., Forrest, A. R. R., Hayashizaki, Y., Carninci, P. & Lenhard, B. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res. 43, e51 (2015).
pubmed: 25653163 pmcid: 4417143 doi: 10.1093/nar/gkv054
Balwierz, P. J. et al. Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biol. 10, R79 (2009).
pubmed: 19624849 pmcid: 2728533 doi: 10.1186/gb-2009-10-7-r79
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
pubmed: 29155950 doi: 10.1093/nar/gkx1098
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250 pmcid: 187518
Frith, M. C. & Kawaguchi, R. Split-alignment of genomes finds orthologies more accurately. Genome Biol. 16, 106 (2015).
pubmed: 25994148 pmcid: 4464727 doi: 10.1186/s13059-015-0670-9
Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).
pubmed: 10964570 doi: 10.1006/jmbi.2000.4042
Arnold, P., Erb, I., Pachkov, M., Molina, N. & van Nimwegen, E. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics 28, 487–494 (2012).
pubmed: 22334039 doi: 10.1093/bioinformatics/btr695
Irimia, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367 (2012).
pubmed: 22722344 pmcid: 3514665 doi: 10.1101/gr.139725.112
de la Calle Mustienes, E., Gómez-Skarmeta, J. L. & Bogdanović, O. Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos. Genomics Data 6, 7–9 (2015).
pubmed: 26697317 pmcid: 4664660 doi: 10.1016/j.gdata.2015.07.020
Nepal, C. et al. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res. 23, 1938–1950 (2013).
pubmed: 24002785 pmcid: 3814893 doi: 10.1101/gr.153692.112
Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic ddespite rapid sequence evolution. Cell 147, 1537–1550 (2011).
pubmed: 22196729 pmcid: 3376356 doi: 10.1016/j.cell.2011.11.055
Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).
doi: 10.1214/11-AOAS466
Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).
pubmed: 26314830 pmcid: 4617971 doi: 10.1101/gr.192294.115
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Chen, Z. et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 5, eaav0547 (2019).
pubmed: 31249862 pmcid: 6594761 doi: 10.1126/sciadv.aav0547
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
doi: 10.1007/BF01386390
Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).
pubmed: 32728240 pmcid: 7398618 doi: 10.1038/s41586-020-2093-3
Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).
pubmed: 21427719 doi: 10.1038/ncomms1248
Zhang, T., Zhang, Z., Dong, Q., Xiong, J. & Zhu, B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 21, 45 (2020).
pubmed: 32085783 pmcid: 7035716 doi: 10.1186/s13059-020-01957-w

Auteurs

Damir Baranasic (D)

MRC London Institute of Medical Sciences, London, UK.
Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.

Matthias Hörtenhuber (M)

Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden.

Piotr J Balwierz (PJ)

MRC London Institute of Medical Sciences, London, UK.
Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Tobias Zehnder (T)

MRC London Institute of Medical Sciences, London, UK.
Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany.

Abdul Kadir Mukarram (AK)

Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden.

Chirag Nepal (C)

Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Csilla Várnai (C)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
Centre for Computational Biology, University of Birmingham, Birmingham, UK.

Yavor Hadzhiev (Y)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Ada Jimenez-Gonzalez (A)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Nan Li (N)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Joseph Wragg (J)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Fabio M D'Orazio (FM)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Dorde Relic (D)

Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.

Mikhail Pachkov (M)

Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.

Noelia Díaz (N)

Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
Institute of Marine Sciences, Barcelona, Spain.

Benjamín Hernández-Rodríguez (B)

Max Planck Institute for Molecular Biomedicine, Muenster, Germany.

Zelin Chen (Z)

Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Marcus Stoiber (M)

Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Michaël Dong (M)

Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden.

Irene Stevens (I)

Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden.

Samuel E Ross (SE)

Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.

Anne Eagle (A)

Institute of Neuroscience, University of Oregon, Eugene, OR, USA.

Ryan Martin (R)

Institute of Neuroscience, University of Oregon, Eugene, OR, USA.

Oluwapelumi Obasaju (O)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Sepand Rastegar (S)

Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany.

Alison C McGarvey (AC)

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.

Wolfgang Kopp (W)

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.

Emily Chambers (E)

Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK.

Dennis Wang (D)

Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK.
Singapore Institute for Clinical Sciences, Singapore, Singapore.

Hyejeong R Kim (HR)

Bateson Centre/Biomedical Science, University of Sheffield, Sheffield, UK.

Rafael D Acemel (RD)

Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.

Silvia Naranjo (S)

Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.

Maciej Łapiński (M)

International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.

Vanessa Chong (V)

MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.

Sinnakaruppan Mathavan (S)

Vision Research Foundation, Sankara Nethralayas, Chennai, India.

Bernard Peers (B)

Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Liège, Belgium.

Tatjana Sauka-Spengler (T)

MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.

Martin Vingron (M)

Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany.

Piero Carninci (P)

Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
Fondazione Human Technopole, Milano, Italy.

Uwe Ohler (U)

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
Institute of Biology, Humboldt University, Berlin, Germany.

Scott Allen Lacadie (SA)

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.

Shawn M Burgess (SM)

Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.

Cecilia Winata (C)

International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.

Freek van Eeden (F)

Bateson Centre/Biomedical Science, University of Sheffield, Sheffield, UK.

Juan M Vaquerizas (JM)

MRC London Institute of Medical Sciences, London, UK.
Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
Max Planck Institute for Molecular Biomedicine, Muenster, Germany.

José Luis Gómez-Skarmeta (JL)

Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.

Daria Onichtchouk (D)

Department of Developmental Biology, Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.

Ben James Brown (BJ)

Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Ozren Bogdanovic (O)

Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.

Erik van Nimwegen (E)

Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland.

Monte Westerfield (M)

Institute of Neuroscience, University of Oregon, Eugene, OR, USA.

Fiona C Wardle (FC)

Randall Centre for Cell & Molecular Biophysics, Guy's Campus, King's College London, London, UK.

Carsten O Daub (CO)

Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden. carsten.daub@ki.se.
Science for Life Laboratory, Solna, Sweden. carsten.daub@ki.se.

Boris Lenhard (B)

MRC London Institute of Medical Sciences, London, UK. b.lenhard@imperial.ac.uk.
Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK. b.lenhard@imperial.ac.uk.

Ferenc Müller (F)

Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. f.mueller@bham.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH