MRI diffusion tensor imaging scalar values in dogs with intervertebral disc herniation: A comparison between manual and semiautomated region of interest methods.
axial diffusivity
fractional anisotropy
mean diffusivity
radial diffusivity
spinal cord toolbox
Journal
Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association
ISSN: 1740-8261
Titre abrégé: Vet Radiol Ultrasound
Pays: England
ID NLM: 9209635
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
revised:
13
04
2022
received:
13
08
2021
accepted:
14
04
2022
pubmed:
6
7
2022
medline:
18
11
2022
entrez:
5
7
2022
Statut:
ppublish
Résumé
Magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) measures have been described as methods for quantifying spinal cord injury and predicting outcome in dogs with intervertebral disc herniation (IVDH); however, studies comparing methods for selecting regions of interest (ROIs) are currently lacking. The aims of this retrospective, methods comparison, observational study were to compare DTI measurements acquired using manual (mROI) versus semiautomated ROI (sROI) methods and to compare DTI measurements with patient outcomes. Magnetic resonance imaging scans that included DTI pulse sequences were retrieved for 65 dogs with confirmed IVDH. Regions of interest were placed at one vertebral length cranial and caudal to the region of spinal cord compression (RSCC) using the mROI and sROI methods. Scalar values based on the mROI and sROI methods were compared. There was a significant difference for all DTI measures (P < 0.0001), where fractional anisotropy was higher (95% confidence interval [CI]: 0.15, 0.19) and mean diffusivity (MD; CI: -0.41, -0.35), axial diffusivity (AD; CI: -0.47, -0.36) and radial diffusivity (RD; CI: -0.36, -0.27) were lower for the mROI than for the sROI. For both the mROI and sROI, MD, AD, and RD were significantly lower (p < 0.05) at the RSCC in paraplegic dogs that did not regain motor function. The findings indicated that DTI methods for quantifying SCI using open source software and ROI were feasible for use in dogs with IVDH; however, values based on sROI methods differed from values based on mROI methods. Some DTI measures based on both the mROI and sROI methods were predictive of poor patient outcome.
Types de publication
Journal Article
Observational Study, Veterinary
Langues
eng
Sous-ensembles de citation
IM
Pagination
753-762Informations de copyright
© 2022 American College of Veterinary Radiology.
Références
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994; 66(1): 259-267.
Lin M, He H, Schifitto G, Zhong J. Simulation of changes in diffusion related to different pathologies at cellular level after traumatic brain injury. Magn Reson Med. 2016; 76(1): 290-300.
Liu CB, Yang DG, Zhang X, et al. Degeneration of white matter and gray matter revealed by diffusion tensor imaging and pathological mechanism after spinal cord injury in canine. CNS Neurosci Ther. 2019; 25(2): 261-272. doi:https://doi.org/10.1111/cns.13044
Liu C, Yang D, Li J, et al. Dynamic diffusion tensor imaging of spinal cord contusion: a canine model. J Neurosci Res. 2018; 96(6): 1093-1103. doi:https://doi.org/10.1002/jnr.24222
Johnson PJ, Miller AD, Cheetham J, et al. In vivo detection of microstructural spinal cord lesions in dogs with degenerative myelopathy using diffusion tensor imaging. J Vet Intern Med. 2021; 35(1): 352-362. doi:https://doi.org/10.1111/jvim.16014
Lewis MJ, Early PJ, Mariani CL, Munana KR, Olby NJ. Influence of Duration of Injury on Diffusion Tensor Imaging in Acute Canine Spinal Cord Injury. J Neurotrauma. 2020; 37(21): 2261-2267. doi:https://doi.org/10.1089/neu.2019.6786
Shinn RL, Pancotto TE, Stadler KL, Werre SR, Rossmeisl JH. Magnetization transfer and diffusion tensor imaging in dogs with intervertebral disk herniation. J Vet Intern Med. 2020; 34(6): 2536-2544. doi:https://doi.org/10.1111/jvim.15899
Wang-Leandro A, Hobert MK, Alisauskaite N, et al. Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: a comparative study of in vivo diffusion tensor imaging. Spinal Cord. 2017; 55(12): 1108-1116. doi:https://doi.org/10.1038/sc.2017.83
Wang-Leandro A, Hobert MK, Kramer S, Rohn K, Stein VM, Tipold A. The role of diffusion tensor imaging as an objective tool for the assessment of motor function recovery after paraplegia in a naturally occurring large animal model of spinal cord injury. J Transl Med. 2018; 16(1): 258. doi:https://doi.org/10.1186/s12967-018-1630-4
Wang-Leandro A, Siedenburg JS, Hobert MK, et al. Comparison of Preoperative Quantitative Magnetic Resonance Imaging and Clinical Assessment of Deep Pain Perception as Prognostic Tools for Early Recovery of Motor Function in Paraplegic Dogs with Intervertebral Disk Herniations. J Vet Intern Med. 2017; 31(3): 842-848. doi:https://doi.org/10.1111/jvim.14715
Shanmuganathan K, Zhuo J, Bodanapally UK, et al. Comparison of Acute Diffusion Tensor Imaging and Conventional Magnetic Resonance Parameters in Predicting Long-Term Outcome after Blunt Cervical Spinal Cord Injury. J Neurotrauma. 2020; 37(3): 458-465. doi:https://doi.org/10.1089/neu.2019.6394
Jones JGA, Cen SY, Lebel RM, Hsieh PC, Law M. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol. 2013; 34(2): 471-478. doi:https://doi.org/10.3174/ajnr.A3199
Ellingson BM, Kurpad SN, Schmit BD. Functional correlates of diffusion tensor imaging in spinal cord injury. Biomed Sci Instrum. 2008; 44: 28-33.
Griffin JF, Cohen ND, Young BD, et al. Thoracic and lumbar spinal cord diffusion tensor imaging in dogs. J Magn Reson Imaging JMRI. 2013; 37(3): 632-641. doi:https://doi.org/10.1002/jmri.23862
Yoon H, Park NW, Ha YM, Kim J, Moon WJ, Eom K. Diffusion tensor imaging of white and gray matter within the spinal cord of normal Beagle dogs: subregional differences of the various diffusion parameters. Vet J Lond Engl. 1997; 215: 110-117. doi:https://doi.org/10.1016/j.tvjl.2016.03.018
Pease A, Miller R. The use of diffusion tensor imaging to evaluate the spinal cord in normal and abnormal dogs. Vet Radiol Ultrasound Off J Am Coll Vet Radiol Int Vet Radiol Assoc. 2011; 52(5): 492-497. doi:https://doi.org/10.1111/j.1740-8261.2011.01837.x
Hobert MK, Stein VM, Dziallas P, Ludwig DC, Tipold A. Evaluation of normal appearing spinal cord by diffusion tensor imaging, fiber tracking, fractional anisotropy, and apparent diffusion coefficient measurement in 13 dogs. Acta Vet Scand. 2013; 55: 36. doi: https://doi.org/10.1186/1751-0147-55-36
Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging JMRI. 2001; 13(4): 534-546. doi:https://doi.org/10.1002/jmri.1076
Leong D, Calabrese E, White LE, et al. Correlation of diffusion tensor imaging parameters in the canine brain. Neuroradiol J. 2015; 28(1): 11-18. doi:https://doi.org/10.15274/NRJ-2014-10110
Cohen-Adad J, Descoteaux M, Rossignol S, Hoge RD, Deriche R, Benali H. Detection of multiple pathways in the spinal cord using q-ball imaging. Neuroimage. 2008; 42(2): 739-749. doi:https://doi.org/10.1016/j.neuroimage.2008.04.243
Kaushal M, Shabani S, Budde M, Kurpad S. Diffusion Tensor Imaging in Acute Spinal Cord Injury: a Review of Animal and Human Studies. J Neurotrauma. 2019; 36(15): 2279-2286. doi:https://doi.org/10.1089/neu.2019.6379
Papinutto N, Asteggiano C, Bischof A, et al. Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross-Sectional and Gray Matter Areas. J Neuroimaging Off J Am Soc Neuroimaging. 2020; 30(1): 110-118. doi:https://doi.org/10.1111/jon.12666
Astolfi L, Gonzalez Andino S, De Vico Fallani F, Babiloni F. Processing of brain signals by using hemodynamic and neuroelectromagnetic modalities. Comput Intell Neurosci; 2010: 1-2. doi: https://doi.org/10.1155/2010/934180. Published online 2010:934180.
Rovaris M, Agosta F, Pagani E, Filippi M. Diffusion tensor MR imaging. Neuroimaging Clin N Am. 2009; 19(1): 37-43. doi:https://doi.org/10.1016/j.nic.2008.08.001
Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999; 42(3): 515-525.
Liu X, Zhu T, Gu T, Zhong J, Optimization of in vivo high-resolution DTI of nonhuman primates on a 3T human scanner. Methods San Diego Calif. 2010;50(3):205-213. doi:https://doi.org/10.1016/j.ymeth.2009.06.008
Ressel V, van Hedel HJA, Scheer I, O'Gorman Tuura R. Comparison of DTI analysis methods for clinical research: influence of preprocessing and tract selection methods. Eur Radiol Exp. 2018; 2(1): 33. doi:https://doi.org/10.1186/s41747-018-0066-1
Leutritz T, Seif M, Helms G, et al. Multiparameter mapp. Hum Brain Mapp. 2020; 41(15): 4232-4247. doi:https://doi.org/10.1002/hbm.25122
Moore SA, Tipold A, Olby NJ, Stein V, Granger N. Current Approaches to the Management of Acute Thoracolumbar Disc Extrusion in Dogs. Front Vet Sci. 2020; 7: 610. doi:https://doi.org/10.3389/fvets.2020.00610
De Leener B, Lévy S, DuPont SM, et al. SCT: spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017; 145(Pt A): 24-43. doi:https://doi.org/10.1016/j.neuroimage.2016.10.009
David G, Freund P, Mohammadi S. The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI. Neuroimage. 2017; 158: 296-307. doi:https://doi.org/10.1016/j.neuroimage.2017.06.051
Kimura-Ohba S, Yang Y, Thompson J, et al. Transient increase of fractional anisotropy in reversible vasogenic edema. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2016; 36(10): 1731-1743. doi:https://doi.org/10.1177/0271678X16630556