WARS1 and SARS1: Two tRNA synthetases implicated in autosomal recessive microcephaly.


Journal

Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429

Informations de publication

Date de publication:
10 2022
Historique:
revised: 10 06 2022
received: 03 06 2021
accepted: 01 07 2022
pubmed: 6 7 2022
medline: 9 9 2022
entrez: 5 7 2022
Statut: ppublish

Résumé

Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.

Identifiants

pubmed: 35790048
doi: 10.1002/humu.24430
doi:

Substances chimiques

Amino Acyl-tRNA Synthetases EC 6.1.1.-
Ligases EC 6.-
RNA, Transfer 9014-25-9
Tryptophan-tRNA Ligase EC 6.1.1.2
WARS1 protein, human EC 6.1.1.2
SARS1 protein, human EC 6.1.1.11

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1454-1471

Informations de copyright

© 2022 The Authors. Human Mutation published by Wiley Periodicals LLC.

Références

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248-249. https://doi.org/10.1038/nmeth0410-248
Ahn, Y. H., Park, S., Choi, J. J., Park, B. K., Rhee, K. H., Kang, E., Ahn, S., Lee, C. H., Lee, J. S., Inn, K. S., Cho, M. L., Park, S. H., Park, K., Park, H. J., Lee, J. H., Park, J. W., Kwon, N. H., Shim, H., Han, B. W., … Kim, S. (2017). Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection. Nature Microbiology, 2, 17015.
Altmüller, J., Motameny, S., Becker, C., Thiele, H., Chatterjee, S., Wollnik, B., & Nürnberg, P. (2016). A systematic comparison of two new releases of exome sequencing products: The aim of use determines the choice of product. Biological Chemistry, 397(8), 791-801. https://doi.org/10.1515/hsz-2015-0300
Amberg, R., Mizutani, T., Wu, X.-Q., & Gross, H. J. (1996). Selenocysteine synthesis in mammalia: An identity switch from tRNASerto tRNASec. Journal of Molecular Biology, 263(1), 8-19. https://doi.org/10.1006/jmbi.1996.0552
Ben-Zeev, B., Hoffman, C., Lev, D., Watemberg, N., Malinger, G., Brand, N., & Lerman-Sagie, T. (2003). Progressive cerebellocerebral atrophy: A new syndrome with microcephaly, mental retardation, and spastic quadriplegia. Journal of Medical Genetics, 40(8), e96.
Biesecker, L. G., Adam, M. P., Alkuraya, F. S., Amemiya, A. R., Bamshad, M. J., Beck, A. E., & Zarate, Y. A. (2021). A dyadic approach to the delineation of diagnostic entities in clinical genomics. American Journal of Human Genetics, 108(1), 8-15. https://doi.org/10.1016/j.ajhg.2020.11.013
Botta, E., Theil, A. F., Raams, A., Caligiuri, G., Giachetti, S., Bione, S., & Vermeulen, W. (2021). Protein instability associated with AARS1 and MARS1 mutations causes trichothiodystrophy. Human Molecular Genetics, 30(18), 1711-1720. https://doi.org/10.1093/hmg/ddab123
Casey, J. P., McGettigan, P., Lynam-Lennon, N., McDermott, M., Regan, R., Conroy, J., & Ennis, S. (2012). Identification of a mutation in LARS as a novel cause of infantile hepatopathy. Molecular Genetics and Metabolism, 106(3), 351-358. https://doi.org/10.1016/j.ymgme.2012.04.017
Choi, Y., & Chan, A. P. (2015). Provean web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31(16), 2745-2747. https://doi.org/10.1093/bioinformatics/btv195
Fine, A. S., Nemeth, C. L., Kaufman, M. L., & Fatemi, A. (2019). Mitochondrial aminoacyl-tRNA synthetase disorders: An emerging group of developmental disorders of myelination. Journal of Neurodevelopmental Disorders, 11(1), 29. https://doi.org/10.1186/s11689-019-9292-y
Friedman, J., Smith, D. E., Issa, M. Y., Stanley, V., Wang, R., Mendes, M. I., & Gleeson, J. G. (2019). Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nature Communications, 10(1), 707. https://doi.org/10.1038/s41467-018-07067-3
Fukui, H., Hanaoka, R., & Kawahara, A. (2009). Noncanonical activity of seryl-tRNA synthetase is involved in vascular development. Circulation Research, 104(11), 1253-1259. https://doi.org/10.1161/CIRCRESAHA.108.191189
Galatolo, D., Kuo, M. E., Mullen, P., Meyer-Schuman, R., Doccini, S., Battini, R., & Santorelli, F. M. (2020). Bi-allelic mutations in HARS1 severely impair histidyl-tRNA synthetase expression and enzymatic activity causing a novel multisystem ataxic syndrome. Human Mutation, 41(7), 1232-1237. https://doi.org/10.1002/humu.24024
Guo, M., Yang, X.-L., & Schimmel, P. (2010). New functions of aminoacyl-tRNA synthetases beyond translation. Nature Reviews Molecular Cell Biology, 11(9), 668-674. https://doi.org/10.1038/nrm2956
Helman, G., Mendes, M. I., Nicita, F., Darbelli, L., Sherbini, O., Moore, T., & Husain, R. A. (2021). Expanded phenotype of AARS1-related white matter disease. Genetics in Medicine, 23(12), 2352-2359. https://doi.org/10.1038/s41436-021-01286-8
Holtgrewe, M., Stolpe, O., Nieminen, M., Mundlos, S., Knaus, A., Kornak, U., & Beule, D. (2020). Varfish: Comprehensive DNA variant analysis for diagnostics and research. Nucleic Acids Research, 48(W1), W162-W169. https://doi.org/10.1093/nar/gkaa241
Kok, G., Tseng, L., Schene, I. F., Dijsselhof, M. E., Salomons, G., Mendes, M. I., & Fuchs, S. A. (2021). Treatment of ARS deficiencies with specific amino acids. Genetics in Medicine, 23(11), 2202-2207. https://doi.org/10.1038/s41436-021-01249-z
Kopajtich, R., Murayama, K., Janecke, A. R., Haack, T. B., Breuer, M., Knisely, A. S., & Staufner, C. (2016). Biallelic IARS mutations cause growth retardation with prenatal onset, intellectual disability, muscular hypotonia, and infantile hepatopathy. American Journal of Human Genetics, 99(2), 414-422. https://doi.org/10.1016/j.ajhg.2016.05.027
Krenke, K., Szczałuba, K., Bielecka, T., Rydzanicz, M., Lange, J., Koppolu, A., & Płoski, R. (2019). Farsa mutations mimic phenylalanyl-tRNA synthetase deficiency caused by FARSB defects. Clinical Genetics, 96(5), 468-472. https://doi.org/10.1111/cge.13614
Kuo, M. E., Theil, A. F., Kievit, A., Malicdan, M. C., Introne, W. J., Christian, T., & Mancini, G. M. S. (2019). Cysteinyl-tRNA synthetase mutations cause a multi-system, recessive disease that includes microcephaly, developmental delay, and brittle hair and nails. American Journal of Human Genetics, 104(3), 520-529. https://doi.org/10.1016/j.ajhg.2019.01.006
LaFave, M. C., Varshney, G. K., Vemulapalli, M., Mullikin, J. C., & Burgess, S. M. (2014). A defined zebrafish line for high-throughput genetics and genomics: Nhgri-1. Genetics, 198(1), 167-170. https://doi.org/10.1534/genetics.114.166769
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923
Lee, S. W., Cho, B. H., Park, S. G., & Kim, S. (2004). Aminoacyl-tRNA synthetase complexes: Beyond translation. Journal of Cell Science, 117(Pt 17), 3725-3734. https://doi.org/10.1242/jcs.01342
Li, J.-Q., Dong, H.-L., Chen, C.-X., & Wu, Z.-Y. (2019). A novel WARS mutation causes distal hereditary motor neuropathy in a Chinese family. Brain, 142(9), e49. https://doi.org/10.1093/brain/awz218
Lin, S. J., Vona, B., Barbalho, P. G., Kaiyrzhanov, R., Maroofian, R., Petree, C., Severino, M., Stanley, V., Varshney, P., Bahena, P., Alzahrani, F., lhashem, A., Pagnamenta, A. T., Aubertin, G., Estrada-Veras, J. I., Hernández, H. A. D., Mazaheri, N., Oza, A., Thies, J., … Varshney, G. K. (2021). Biallelic variants in KARS1 are associated with neurodevelopmental disorders and hearing loss recapitulated by the knockout zebrafish. Genetics in Medicine, 23(10), 1933-1943.
Manole, A., Efthymiou, S., O'Connor, E., Mendes, M. I., Jennings, M., Maroofian, R., & Houlden, H. (2020). De novo and bi-allelic pathogenic variants in NARS1 cause neurodevelopmental delay due to toxic Gain-of-Function and partial Loss-of-Function effects. American Journal of Human Genetics, 107(2), 311-324. https://doi.org/10.1016/j.ajhg.2020.06.016
McMillan, H. J., Humphreys, P., Smith, A., Schwartzentruber, J., Chakraborty, P., Bulman, D. E., & Geraghty, M. T. (2015). Congenital visual impairment and progressive microcephaly due to lysyl-transfer ribonucleic acid (RNA) synthetase (KARS) mutations: The expanding phenotype of aminoacyl-transfer RNA synthetase mutations in human disease. Journal of Child Neurology, 30(8), 1037-1043. https://doi.org/10.1177/0883073814553272
Mendes, M. I., Gutierrez Salazar, M., Guerrero, K., Thiffault, I., Salomons, G. S., Gauquelin, L., & Bernard, G. (2018). Bi-allelic mutations in EPRS, encoding the glutamyl-prolyl-aminoacyl-tRNA synthetase, cause a hypomyelinating leukodystrophy. American Journal of Human Genetics, 102(4), 676-684. https://doi.org/10.1016/j.ajhg.2018.02.011
Mendes, M. I., Green, L. M. C., Bertini, E., Tonduti, D., Aiello, C., Smith, D., & Wolf, N. I. (2020). Rars1-related hypomyelinating leukodystrophy: Expanding the spectrum. Annals of Clinical and Translational Neurology, 7(1), 83-93. https://doi.org/10.1002/acn3.50960
Musante, L., Püttmann, L., Kahrizi, K., Garshasbi, M., Hu, H., Stehr, H., & Kuss, A. W. (2017). Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. Human Mutation, 38(6), 621-636. https://doi.org/10.1002/humu.23205
Ng, P. C., & Henikoff, S. (2003). Sift: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812-3814. https://doi.org/10.1093/nar/gkg509
Okamoto, N., Miya, F., Tsunoda, T., Kanemura, Y., Saitoh, S., Kato, M., & Kosaki, K. (2022). Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurological Sciences, 43(4), 2765-2774. https://doi.org/10.1007/s10072-021-05626-z
Okur, V., Ganapathi, M., Wilson, A., & Chung, W. K. (2018). Biallelic variants in VARS in a family with two siblings with intellectual disability and microcephaly: Case report and review of the literature. Cold Spring Harbor Molecular Case Studies, 4(5), a003301. https://doi.org/10.1101/mcs.a003301
Oprescu, S. N., Chepa-Lotrea, X., Takase, R., Golas, G., Markello, T. C., Adams, D. R., & Antonellis, A. (2017). Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Human Mutation, 38(10), 1412-1420. https://doi.org/10.1002/humu.23287
Pitts, M. W., Byrns, C. N., Ogawa-Wong, A. N., Kremer, P., & Berry, M. J. (2014). Selenoproteins in nervous system development and function. Biological Trace Element Research, 161(3), 231-245. https://doi.org/10.1007/s12011-014-0060-2
Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., van der Auwera, G. A., & Banks, E. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 201178. https://doi.org/10.1101/201178
Ravel, J. M., Dreumont, N., Mosca, P., Smith, D. E. C., Mendes, M. I., Wiedemann, A., Coelho, D., Schmitt, E., Rivière, J. B., Tran Mau-Them, F., Thevenon, J., Kuentz, P., Polivka, M., Fuchs, S. A., Kok, G., Thauvin-Robinet, C., Guéant, J. L., Salomons, G. S., Faivre, L., & Feillet, F. (2021). A bi-allelic loss-of-function SARS1 variant in children with neurodevelopmental delay, deafness, cardiomyopathy, and decompensation during fever. Human Mutation, 42(12), 1576-1583.
Rubio Gomez, M. A., & Ibba, M. (2020). Aminoacyl-tRNA synthetases. RNA (New York, N.Y.), 26(8), 910-936. https://doi.org/10.1261/rna.071720.119
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth.2019
Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). Mutationtaster2: Mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361-362. https://doi.org/10.1038/nmeth.2890
Shen, N., Guo, L., Yang, B., Jin, Y., & Ding, J. (2006). Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Research, 34(11), 3246-3258. https://doi.org/10.1093/nar/gkl441
Simons, C., Griffin, L. B., Helman, G., Golas, G., Pizzino, A., Bloom, M., & Vanderver, A. (2015). Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect. American Journal of Human Genetics, 96(4), 675-681. https://doi.org/10.1016/j.ajhg.2015.02.012
Swanson, R., Hoben, P., Sumner-Smith, M., Uemura, H., Watson, L., & Söll, D. (1988). Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase. Science (New York, N.Y.), 242(4885), 1548-1551. https://doi.org/10.1126/science.3144042
Taft, R. J., Vanderver, A., Leventer, R. J., Damiani, S. A., Simons, C., Grimmond, S. M., & Wolf, N. I. (2013). Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. American Journal of Human Genetics, 92(5), 774-780. https://doi.org/10.1016/j.ajhg.2013.04.006
Theil, A. F., Botta, E., Raams, A., Smith, D. E. C., Mendes, M. I., Caligiuri, G., & Orioli, D. (2019). Bi-allelic TARS mutations are associated with brittle hair phenotype. American Journal of Human Genetics, 105(2), 434-440. https://doi.org/10.1016/j.ajhg.2019.06.017
Thevenon, J., Duffourd, Y., Masurel-Paulet, A., Lefebvre, M., eillet F, F., El Chehadeh-Djebbar, S., St-Onge, J., Steinmetz, A., Huet, F., Chouchane, M., Darmency-Stamboul, V., Callier, P., Thauvin-Robinet, C., Faivre, L., & Rivière, J. B. (2016). Diagnostic odyssey in severe neurodevelopmental disorders: Toward clinical whole-exome sequencing as a first-line diagnostic test. Clinical Genetics, 89(6), 700-707.
Tsai, P.-C., Soong, B.-W., Mademan, I., Huang, Y.-H., Liu, C.-R., Hsiao, C.-T., Wu, H. T., Liu, T. T., Liu, Y. T., Tseng, Y. T., Lin, K. P., Yang, U. C., Chung, K. W., Choi, B. O., Nicholson, G. A., Kennerson, M. L., Chan, C. C., De Jonghe, P., Cheng, T. H., … Lee, Y. C. (2017). A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy. Brain: A Journal of Neurology, 140(5), 1252-1266. https://doi.org/10.1093/brain/awx058
Varshney, G. K., Carrington, B., Pei, W., Bishop, K., Chen, Z., Fan, C., & Burgess, S. M. (2016). A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nature Protocols, 11(12), 2357-2375. https://doi.org/10.1038/nprot.2016.141
Wallen, R. C., & Antonellis, A. (2013). To charge or not to charge: Mechanistic insights into neuropathy-associated tRNA synthetase mutations. Current Opinion in Genetics & Development, 23(3), 302-309. https://doi.org/10.1016/j.gde.2013.02.002
Wang, C., Guo, Y., Tian, Q., Jia, Q., Gao, Y., Zhang, Q., Zhou, C., & Xie, W. (2015). SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis. Nucleic Acids Research, 43(21), 10534-10545.
Wang, K., Zhao, S., Liu, B., Zhang, Q., Li, Y., Liu, J., Shen, Y., Ding, X., Lin, J., Wu, Y., Yan, Z., Chen, J., Li, X., Song, X., Niu, Y., Liu, J., Chen, W., Ming, Y., Du, R., … Wu, N. (2018). Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). Journal of Medical Genetics, 55(10), 675-684.
Williams, K. B., Brigatti, K. W., Puffenberger, E. G., Gonzaga-Jauregui, C., Griffin, L. B., Martinez, E. D., & Strauss, K. A. (2019). Homozygosity for a mutation affecting the catalytic domain of tyrosyl-tRNA synthetase (YARS) causes multisystem disease. Human Molecular Genetics, 28(4), 525-538. https://doi.org/10.1093/hmg/ddy344
Wolf, N. I., Salomons, G. S., Rodenburg, R. J., Pouwels, P. J. W., Schieving, J. H., Derks, T. G. J., & Waisfisz, Q. (2014). Mutations in RARS cause hypomyelination. Annals of Neurology, 76(1), 134-139. https://doi.org/10.1002/ana.24167
Xu, X., Shi, Y., & Yang, X.-L. (2013). Crystal structure of human seryl-tRNA synthetase and Ser-SA complex reveals a molecular lever specific to higher eukaryotes. Structure (London, England: 1993), 21, 11. https://doi.org/10.1016/j.str.2013.08.021
Xu, X., Zhou, H., Zhou, Q., Hong, F., Vo, M. N., Niu, W., Wang, Z., Xiong, X., Nakamura, K., Wakasugi, K., Schimmel, P., & Yang, X. L. (2018). An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. RNA Biology, 15(4-5), 649-658.
Yu, Y. C., Han, J. M., & Kim, S. (2021). Aminoacyl-tRNA synthetases and amino acid signaling. Biochimica et Biophysica Acta, Molecular Cell Research, 1868(1), 118889. https://doi.org/10.1016/j.bbamcr.2020.118889
Zhang, X., Ling, J., Barcia, G., Jing, L., Wu, J., Barry, B. J., & Nabbout, R. (2014). Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. American Journal of Human Genetics, 94(4), 547-558. https://doi.org/10.1016/j.ajhg.2014.03.003
Zhang, X., Shen, Y., Wang, X., Yuan, G., Zhang, C., & Yang, Y. (2019). A novel homozygous CFAP65 mutation in humans causes male infertility with multiple morphological abnormalities of the sperm flagella. Clinical Genetics, 96(6), 541-548.

Auteurs

Nina Bögershausen (N)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Hannah E Krawczyk (HE)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Rami A Jamra (RA)

Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.

Sheng-Jia Lin (SJ)

Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

Gökhan Yigit (G)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Irina Hüning (I)

Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.

Anna M Polo (AM)

MVZ Labor Krone, Filialpraxis für Humangenetik, Bielefeld, Germany.

Barbara Vona (B)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.

Kevin Huang (K)

Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

Julia Schmidt (J)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Janine Altmüller (J)

Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.

Johannes Luppe (J)

Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.

Konrad Platzer (K)

Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.

Beate B Dörgeloh (BB)

Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.

Andreas Busche (A)

Institut für Humangenetik, Westfälische Wilhelms-Universität Münster, Münster, Germany.

Saskia Biskup (S)

CeGaT GmbH, Center for Genomics and Transcriptomics, Tübingen, Germany.

Marisa I Mendes (MI)

Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands.

Desiree E C Smith (DEC)

Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands.

Gajja S Salomons (GS)

Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands.

Arne Zibat (A)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Eva Bültmann (E)

Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany.

Peter Nürnberg (P)

Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Malte Spielmann (M)

Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.

Johannes R Lemke (JR)

Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.

Yun Li (Y)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Martin Zenker (M)

Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.

Gaurav K Varshney (GK)

Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

Hauke S Hillen (HS)

Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany.

Christian P Kratz (CP)

Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.

Bernd Wollnik (B)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH