Chemosensory loss in COVID-19.
COVID-19
SARS CoV-2
chemosensory disorders
olfaction
smell loss
taste
taste loss
Journal
Oral diseases
ISSN: 1601-0825
Titre abrégé: Oral Dis
Pays: Denmark
ID NLM: 9508565
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
revised:
29
06
2022
received:
19
05
2022
accepted:
30
06
2022
pubmed:
6
7
2022
medline:
16
11
2022
entrez:
5
7
2022
Statut:
ppublish
Résumé
The COVID-19 pandemic caused by SARS-CoV-2 virus quickly spread globally, infecting over half a billion individuals, and killing over 6 million*. One of the more unusual symptoms was patients' complaints of sudden loss of smell and/or taste, a symptom that has become more apparent as the virus mutated into different variants. Anosmia and ageusia, the loss of smell and taste, respectively, seem to be transient for some individuals, but for others persists even after recovery from the infection. Causes for COVID-19-associated chemosensory loss have undergone several hypotheses. These include non-functional or destroyed olfactory neurons and gustatory receptors or of their supporting cells, disruption of the signaling protein Neuropilin-1, and disruption in the interaction with semaphorins, key molecules in the gustatory and olfactory axon guidance. The current paper will review these hypotheses and chart out potential therapeutic avenues.
Identifiants
pubmed: 35790059
doi: 10.1111/odi.14300
pmc: PMC9349612
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
2337-2346Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Adam, D. (2022). COVID's true death toll: Much higher than official records. Modelling suggests that by the end of 2021, some 18 million people had died because of the pandemic. Nature, 603, 562.
Addison, A. B., Wong, B., Ahmed, T., Macchi, A., Konstantinidis, I., Huart, C., Frasnelli, J., Fjaeldstad, A. W., Ramakrishnan, V. R., Rombaux, P., Whitcroft, K. L., Holbrook, E. H., Poletti, S. C., Hsieh, J. W., Landis, B. N., Boardman, J., Welge-Lüssen, A., Maru, D., Hummel, T., & Philpott, C. M. (2021). Clinical olfactory working group consensus statement on the treatment of postinfectious olfactory dysfunction. The Journal of Allergy and Clinical Immunology, 147(5), 1704-1719. https://doi.org/10.1016/j.jaci.2020.12.641
Barretto, R., Gillis-Smith, S., Chandrashekar, J., Yarmolinsky, D. A., Schnitzer, M. J., Ryba, N. J. P., & Zuker, C. S. (2015). The neural representation of taste quality at the periphery. Nature, 517, 373-376. https://doi.org/10.1038/nature13873
Bartheld, V. C. S., Hagen, M. M., & Butowt, R. (2020). Prevalence of chemosensory dysfunction in COVID-19 patients: A systematic review and meta-analysis reveals significant ethnic differences. ACS Chemical Neuroscience, 11(19), 2944-2961. https://doi.org/10.1101/2020.06.15.20132134
Brann, D. H., Tsukahara, T., Weinreb, C., Lipovsek, M., Van Den Berge, K., Gong, B., Chance, R., Maccaulay, I. C., Chou, H. J., Fletcher, R. B., Das, D., Street, K., Debezieux, H. R., Choi, Y. G., Risso, D., Dudoit, S., Purdom, E., Mill, J., Hachem, R. A., … Datta, S. R. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances, 6(31), eabc5801. https://doi.org/10.1126/sciadv.abc5801
Bryche, B. S., St Albin, A., Murri, S., Lacôte, S., Pulido, C., Ar Gouilh, M., Lesellier, S., Servat, A., Wasniewski, M., Picard-Meyer, E., Monchatre-Leroy, E., Volmer, R., Rampin, O., le Goffic, R., Marianneau, P., & Meunier, N. (2020). Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain, Behavior, and Immunity, 89, 579-586. https://doi.org/10.1016/j.bbi.2020.06.032
Butowt, R., & von Bartheld, C. S. (2021). Anosmia in COVID-10: Underlying mechanisms and assessment of an olfactory route to brain infection. The Neuroscientist, 27(6), 582-603. https://doi.org/10.1177/1073858420956905
Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., Smura, T., Levanov, L., Szirovicza, L., Tobi, A., Kallio-Kokko, H., Österlund, P., Joensuu, M., Meunier, F. A., Butcher, S. J., … Simons, M. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 370(6518), 856-860. https://doi.org/10.1126/science.abd2985
Cooper, K. W., Brann, D. H., Farruggia, M. C., Bhutani, S., Pellegrino, R., Tsukahara, T., Weinreb, C., Joseph, P. V., Larson, E. D., Parma, V., Albers, M. W., Barlow, L. A., Datta, S. R., & di Pizio, A. (2020). COVID-19 and the chemical senses: Supporting players take center stage. Neuron, 107(2), 219-233. https://doi.org/10.1016/j.neuron.2020.06.032
Daly, J. L., Simonetti, B., Klein, K., Chen, K. E., Williamson, M. K., Antón-Plágaro, C., Shoemark, D. K., Simón-Gracia, L., Bauer, M., Hollandi, R., Greber, U. F., Horvath, P., Sessions, R. B., Helenius, A., Hiscox, J. A., Teesalu, T., Matthews, D. A., Davidson, A. D., Collins, B. M., … Yamauchi, Y. (2020). Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 370(6518), 861-865. https://doi.org/10.1126/science.abd3072
Deems, D. A., Doty, R. L., Settle, R. G., Moore-Gillon, V., Shaman, P., Mester, A. F., Kimmelman, C. P., Brightman, V. J., & Snow, J. B., Jr. (1991). Smell and taste disorders: A study of 750 patients from the University of Pennsylvania Smell and taste center. Archives of Otorhinolaryngology-Head & Neck Surgery, 117, 519-528. https://doi.org/10.1001/archotol.1991.01870170065015
Dicpinigaitis, P. V. (2021). Post-viral anosmia (loss of sensation of smell) did not begin with COVID-19! Lung, 199(3), 237-238. https://doi.org/10.1007/s00408-021-00448-4
Doty, R. L. (2021). The mechanisms of smell loss after SARS-CoV-2 infection. Lancet Neurology, 20(9), 693-695. https://doi.org/10.1016/S1474-4422(21)00202-7
Doyle, M. E., Appleton, A., Liu, Q. R., Yao, Q., Mazucanti, C. H., & Egan, J. M. (2021). Human type II taste cells express angiotensin-converting enzyme 2 and are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). American Journal of Pathology, 191(9), 1511-1519. https://doi.org/10.1016/j.ajpath.2021.05.010
Esmaeili, M., Abdi, F., Shafiee, G., Asayesh, H., Abdar, Z. E., Baygi, F., & Qorbani, M. (2021). Olfactory and gustatory dysfunction in 2019 novel coronavirus: An updated systematic review and meta-analysis. International Journal of Preventive Medicine, 12(1), 170. https://doi.org/10.4103/ijpvm.IJPVM_484_20
Fodoulian, L., Tuberosa, J., Rossier, D., Landis, B. N., Carleton, A., & Rodriguez, I. (2020). SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. iScience, 23(12), 101839. https://doi.org/10.1101/2020.03.31.013268
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C. L., Hui, D. S. C., du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., … China Medical Treatment Expert Group for Covid-19. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382, 1708-1720. https://doi.org/10.1056/NEJMoa2002032
Gudowska-Sawczuk, M., & Mroczko, B. (2021). The role of Neuropilin-1 (NRP-1) in SARS-CoV-2 infection: Review. Journal of Clinical Medicine, 10(13), 2772. https://doi.org/10.3390/jcm10132772
Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology, 203(2), 631-637. https://doi.org/10.1002/path.1570
Han, A. Y., Mukdad, L., Long, J. L., & Lopez, I. A. (2020). Anosmia in COVID-19: Mechanisms and significance. Chemical Senses, 45(6), 423-428. https://doi.org/10.1093/chemse/bjaa040
Hannum, M. E., Koch, R. J., Ramirez, V. A., Marks, S. S., Toskala, A. K., Herriman, R. D., Lin, C., Joseph, P. V., & Reed, D. R. (2022). Taste loss as a distinct symptom of COVID-19: A systematic review and meta-analysis. Chemical Senses, 47, bjac001. https://doi.org/10.1093/chemse/bjac001
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Hummel, T., Rissom, K., Reden, J., Hähner, A., Weidenbecher, M., & Hüttenbrink, K. (2009). Effects of olfactory training in patients with olfactory loss. Laryngoscope, 119(3), 496-499. https://doi.org/10.1002/lary.20101
Iebba, V., Zanotta, N., Campisciano, G., Zerbato, V., Di Bella, S., Cason, C., Luzzati, R., Confalonieri, M., Palamara, A. T., & Comar, M. (2021). Profiling of oral microbiota and cytokines in COVID-19 patients. Frontiers in Microbiology, 12. https://doi.org/10.1101/2020.12.13.422589
Kaupp, U. B. (2010). Olfactory signaling in vertebrates and insects: Differences and commonalities. Nature Reviews Neuroscience, 11(3), 188-200. https://doi.org/10.1038/nrn2789
Khani, E., Khiali, S., Beheshtirouy, S., & Entezari-Maleki, T. (2021). Potential pharmacologic treatments for COVID-19 smell and taste loss: A comprehensive review. European Journal of Pharmacology, 912, 174582. https://doi.org/10.1016/j.ejphar.2021.174582
Klopfenstein, T., Kadiane-Oussou, N. J., Toko, L., Royer, P. Y., Lepiller, Q., & Gendrin, V. (2020). Features of anosmia in COVID-19. Médicine et Maladies Infectieuses, 50(5), 436-439. https://doi.org/10.1016/j.medmal.2020.04.006
Koyama, S., Kondo, K., Ueha, R., Kashiwadani, H., & Heinbockel, T. (2021). Possible use of phytochemicals for recovery from COVID-19-induced anosmia and ageusia. International Journal of Molecular Sciences, 22, 8912. https://doi.org/10.3390/ijms22168912
Koyama, S., Purk, A., Kaur, M., Soini, H. A., Novotny, M. V., Davis, K., Kao, C. C., Matsunami, H., & Mescher, A. (2019). Beta-caryophyllene enhances wound healing through multiple routes. PLoS One, 14, e0216104. https://doi.org/10.1371/journal.pone.0216104
Lane, R. K., Guo, H., Fisher, A. D., Diep, J., Lai, Z., Chen, Y., Upton, J. W., Carette, J., Mocarski, E. S., & Kaiser, W. J. (2020). Necroptosis-based CRISPR knockout screen reveals Neuropilin-1 as a critical host factor for early stages of murine cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 117, 20109-20116. https://doi.org/10.1073/pnas.1921315117
Lee, H., Macpherson, L. J., Zuker, C. S., & Ryba, N. J. P. (2017). Rewiring the taste system. Nature, 548(7667), 330-333. https://doi.org/10.1038/nature23299
Li, Z., & Buck, M. (2021). Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of spike protein domains S1 and S2. Biophysical Journal, 120(14), 2828-2837. https://doi.org/10.1101/2021.01.06.425627
Mastrangelo, A., Bonato, M., & Cinque, P. (2021). Smell and taste disorders in COVID-19: From pathogenesis to clinical features and outcomes. Neuroscience Letters, 748, 135694. https://doi.org/10.1016/j.neulet.2021.135694
Mayi, B. S., Leibowitz, J. A., Woods, A. T., Ammon, K. A., Liu, A. E., & Raja, A. (2021). The role of Neuropilin-1 in COVID-19. PLoS Pathogens, 17(1), e1009153. https://doi.org/10.1371/journal.ppat.1009153
Menashe, I., Man, O., Lancet, D., & Gilad, Y. (2003). Different noses for different people. Nature Genetics, 34(2), 143-144. https://doi.org/10.1038/ng1160
O'Driscoll, M., Ribeiro Dos Santos, G., Wang, L., Cummings, D. A. T., Azman, A. S., Paireau, J., Fontanet, A., Cauchemez, S., & Salje, H. (2020). Age-specific mortality and immunity patterns of SARS-CoV-2. Nature, 590, 140-145. https://doi.org/10.1038/s41586-020-2918-0
Ripa, M., Galli, L., Poli, A., Oltolini, C., Spagnuolo, V., Mastrangelo, A., Muccini, C., Monti, G., de Luca, G., Landoni, G., Dagna, L., Clementi, M., Rovere Querini, P., Ciceri, F., Tresoldi, M., Lazzarin, A., Zangrillo, A., Scarpellini, P., Castagna, A., & COVID-BioB Study Group. (2021). Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clinical Microbiology and Infections, 27(3), 451-457. https://doi.org/10.1016/j.cmi.2020.10.021
Roper, S. D., & Chaudhari, N. (2017). Taste buds: Cells, signals, and synapses. Nature Reviews Neuroscience, 18(8), 485-497. https://doi.org/10.1038/nrn.2017.68
Schwarting, G. A., Kostek, C., Ahmad, N., Dibble, C., Pays, L., & Püschel, A. W. (2000). Semaphorin 3A is required for guidance of olfactory axons in mice. Journal of Neuroscience, 20(20), 7691-7697. https://doi.org/10.1523/JNEUROSCI.20-20-07691.2000
Sharma, A., Kumar, R., Aier, I., Semwal, R., Tyagi, P., & Varadwaj, P. (2019). Sense of smell: Structural, functional, mechanistic advancements and challenges in human olfactory research. Current Neuropharmacology, 17, 891-911. https://doi.org/10.2174/1570159X17666181206095626
Shelton, J. F., Shastri, A. J., Fletez-Brant, K., The 23andMe COVID-19 Team, Aslibekyan, S., & Auton, A. (2022). The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nature Genetics, 54, 121-124. https://doi.org/10.1038/s41588-021-00986-w
Sims, A. C., Baric, R. S., Yount, B., Burkett, S. E., Collins, P. L., & Pickles, R. J. (2005). Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. Journal of Virology, 79(24), 15511-15524. https://doi.org/10.1128/JVI.79.24.15511-15524.2005
Spielman, A.I. (2019). Chemosensory disorders. In Clinician's guide - salivary and chemosensory disorders Brennan, M. &. Fox, P.C. Eds. (2nd ed.). The American Academy of Oral Medicine, p.30.
Spielman, A. I., & Brand, J. G. (2018). Wiring taste receptor cells to the central gustatory system. Oral Diseases, 24(8), 1388-1389. https://doi.org/10.1111/odi.12833
Spielman, A. I., Ozdener, M. H., & Brand, J. G. (2019). Chemosensory systems. In eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0000038.pub3
Srinivasan, M. (2021). Taste dysfunction and long COVID-19. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.716563
Streeck, H. (2020). Neue corona-symptome entdeckt. Frankfurter Allgemeine Zeitung. https://www.faz.net/aktuell/gesellschaft/gesundheit/coronavirus/neue-corona-symptome-entdeckt-virologe-hendrikstreeck-zum-virus-16681450.html?GEPC=s3
Vaira, L. A., Salzano, G., Deiana, G., & De Riu, G. (2020). Anosmia and ageusia: Common findings in COVID-19 patients. Laryngoscope, 130(7), 1787. https://doi.org/10.1002/lary.28692
Vitale-Cross, L., Szalayova, I., Scoggins, A., Palkovits, M., & Mezey, E. (2022). SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: Clinical implications. eBioMedicine, 78, 103981. https://doi.org/10.1016/j.ebiom.2022.103981
Wagner, T., Shweta, F., Murugadoss, K., Awasthi, S., Venkatakrishnan, A., Bade, S., Puranik, A., Kang, M., Pickering, B. W., O'Horo, J. C., Bauer, P. R., Razonable, R. R., Vergidis, P., Temesgen, Z., Rizza, S., Mahmood, M., Wilson, W. R., Challener, D., Anand, P., … Soundararajan, V. (2020). Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis. eLife, 9, e58227. https://doi.org/10.7554/eLife.58227
Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., Aravkin, A. Y., Bisignano, C., Barber, R. M., Alam, T., Fuller, J. E., May, E. A., Jones, D. P., Frisch, M. E., Abbafati, C., Adolph, C., Allorant, A., Amlag, J. O., Bang-Jensen, B., … Murray, C. J. L. (2022). Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020-21. The Lancet, 399(10334), 1513-1536.
Wang, H., Zhou, M., Brand, J., & Huang, L. (2007). Inflammation activates the interferon signaling pathways in taste bud cells. The Journal of Neuroscience, 27, 10703-10713. https://doi.org/10.1523/JNEUROSCI.3102-07.2007
Wu, Y., Cheng, X., Jiang, G., Tang, H., Ming, S., Tang, L., Lu, J., Guo, C., Shan, H., & Huang, X. (2021). Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. npj Biofilms Microbiomes, 7, 61. https://doi.org/10.1038/s41522-021-00232-5
Yamagishi, M., Fujiwara, M., & Nakamura, H. (1994). Olfactory mucosal findings and clinical course in patients with olfactory disorders following upper respiratory viral infection. Rhinology, 32(3), 113-118.
Zazhytska, M., Kodra, A., Hoagland, D. A., Frere, J., Fullard, J. F., Shayya, H., McArthur, N., Moeller, R., Uhl, S., Omer, A. D., Gottesman, M. E., Firestein, S., Gong, Q., Canoll, P. D., Goldman, J. E., Roussos, P., ten Oever, B., Overdevest, J. B., & Lomvardas, S. (2022). Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell, 185(6), 1052-1064.e.12. https://doi.org/10.1016/j.cell.2022.01.024