Phylogenomic characterization of historic lumpy skin disease virus isolates from South Africa.


Journal

Archives of virology
ISSN: 1432-8798
Titre abrégé: Arch Virol
Pays: Austria
ID NLM: 7506870

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 31 03 2022
accepted: 16 05 2022
pubmed: 7 7 2022
medline: 27 8 2022
entrez: 6 7 2022
Statut: ppublish

Résumé

The poxvirus lumpy skin disease virus (LSDV) is the causative agent of the vexatious lumpy skin disease, which predominantly affects cattle and water buffalo. It has been endemic to South Africa since the 1950s, and in 1960, a live attenuated vaccine was commercially released for use in the country to mitigate the spread of this transboundary disease. This vaccine (Neethling/vaccine/LW-1959) was generated from serial passages of the prototype lumpy skin disease virus strain Neethling-WC/RSA/1957, which was isolated in 1957 from an outbreak in the Western Cape province of South Africa and was subsequently used to prove the infectious nature of the virus and the resulting disease in cattle. In this study, we determined the complete genome sequence of the LSDV prototype strain Neethling-WC/RSA/1957, as well as three other LSDV isolates from the 1950s, one wild-type isolate from the 1970s, and a commercial vaccine produced in 1988 (LW-1959). Phylogenomic analysis showed that all six sequences were in cluster 1.1, along with previous sequences of the vaccine strain, the oldest known isolate (LSDV/Haden/RSA/1954), and virulent viruses isolated in the 1990s from South Africa. Seven single-nucleotide polymorphisms were identified between the Neethling-WC/RSA/1957 strain and the vaccine strain (LW-1959), providing new insights into virus attenuation and possible markers for DIVA assays.

Identifiants

pubmed: 35792935
doi: 10.1007/s00705-022-05515-6
pii: 10.1007/s00705-022-05515-6
doi:

Substances chimiques

Vaccines, Attenuated 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2063-2070

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Sharawi SSA, Abd El-Rahim IHA (2011) The utility of polymerase chain reaction for diagnosis of lumpy skin disease in cattle and water buffaloes in Egypt. Revue Scientifique et Technique de l’OIE 30(3):821–830. https://doi.org/10.20506/rst.30.3.2075
doi: 10.20506/rst.30.3.2075 pubmed: 22435194
Last RD (2017) Lumpy skin disease of springbok. Hooo Hooo 11(4). https://vet360.vetlink.co.za/lumpy-skin-disease-springbok . Accessed 29 Nov 2017
Molini U, Boshoff E, Niel A, Phillips J, Khaiseb S, Settypalli T, Dundon W, Cattoli G, Lamien C (2021) Detection of lumpy skin disease virus in an asymptomatic eland (Taurotragus oryx) in Namibia. J Wildl Dis. https://doi.org/10.7589/jwd-d-20-00181
doi: 10.7589/jwd-d-20-00181 pubmed: 33961035
Alexander RA, Plowright W, Haig DA (1957) Cytopathogenic agents associated with lumpy skin disease of cattle. Bull Epiz Dis Afr 5:489–492
Morris JPA (1931) Pseudo Urticaria of cattle. Department of Animal Health Annual report, Northern Rhodesia (1930), p 20
MacOwen KDS (1959) Observations on the epizootiology of lumpy skin disease during the first year of its occurrence in Kenya. Bull Epiz Dis Afr 7:7–20
Thomas AD, Maré CVE (1945) Knopvelsiekte. J S Afr Vet Med Assoc 16:36–43
van Rooyen PJ, Kumm NAL, Weiss KE, Alexander RA (1959) A preliminary note on the adaptation of a strain of lumpy skin disease virus to propagation in embryonated eggs. Bull Epizoot Dis Afr 7:79
Kara PD, Afonso CL, Wallace DB, Kutish GF, Abolnik C, Lu Z, Vreede FT, Taljaard LCF, Zack A, Viljoen GJ, Rock DL (2003) Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of lumpy skin disease virus. Arc Virol 148:1335–1356. https://doi.org/10.1007/s00705-003-0102-0
doi: 10.1007/s00705-003-0102-0
Mathijs E, Vandenbussche F, Haegeman A, King A, Nthangeni B, Potgieter C, Maartens L, Van Borm S, De Clercq K (2016) Complete genome sequences of the neethling-like lumpy skin disease virus strains obtained directly from three commercial live attenuated vaccines. Genome Announc. https://doi.org/10.1128/genomea.01255-16
doi: 10.1128/genomea.01255-16 pubmed: 27834707 pmcid: 5105100
Lojkić I, Šimić I, Krešić N, Bedeković T (2018) Complete genome sequence of a lumpy skin disease virus strain isolated from the skin of a vaccinated animal. Genome Announc. https://doi.org/10.1128/genomea.00482-18
doi: 10.1128/genomea.00482-18 pubmed: 29853513 pmcid: 5981036
Douglass N, Van Der Walt A, Omar R, Munyanduki H, Williamson A (2019) The complete genome sequence of the lumpy skin disease virus vaccine Herbivac LS reveals a mutation in the superoxide dismutase gene homolog. Adv Virol 164:3107–3109. https://doi.org/10.1007/s00705-019-04405-8
doi: 10.1007/s00705-019-04405-8
Diallo A, Viljoen GJ (2007) Genus capripoxvirus. In: Mercer AA, Schmidt A, Weber O (eds) Poxviruses. Birkhäuser advances in infectious diseases. Birkhäuser, Basel, pp 167–181
Tulman E, Afonso C, Lu Z, Zsak L, Kutish G, Rock D (2001) Genome of lumpy skin disease virus. J Virol 75:7122–7130. https://doi.org/10.1128/jvi.75.15.7122-7130,2001
doi: 10.1128/jvi.75.15.7122-7130,2001 pubmed: 11435593 pmcid: 114441
van Schalkwyk A, Byadovskaya O, Shumilova I, Wallace D, Sprygin A (2021) Estimating evolutionary changes between highly passaged and original parental lumpy skin disease virus strains. Trans Emerg Dis. https://doi.org/10.1111/tbed.14326
doi: 10.1111/tbed.14326
Sprygin A, Babin Y, Pestova Y, Kononova S, Wallace DB, van Schalkwyk A, Byadovskaya O, Diev V, Lozovoy D, Kononov A (2018) Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. PLoS ONE 13(12):e0207480. https://doi.org/10.1371/journal.pone.0207480
doi: 10.1371/journal.pone.0207480 pubmed: 30540759 pmcid: 6291113
Sprygin A, Van Schalkwyk A, Shumilova I, Nesterov A, Kononova S, Prutnikov P, Byadovskaya O, Kononov A (2020) Full-length genome characterization of a novel recombinant vaccine-like lumpy skin disease virus strain detected during the climatic winter in Russia, 2019. Arch Virol 165:2675–2677. https://doi.org/10.1007/s00705-020-04756-7
doi: 10.1007/s00705-020-04756-7 pubmed: 32772251
Biswas S, Noyce R, Babiuk L, Lung O, Bulach D, Bowden T, Boyle D, Babiuk S, Evans D (2019) Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range. Transbound Emerg Dis 67:80–97. https://doi.org/10.1111/tbed.13322
doi: 10.1111/tbed.13322 pubmed: 31379093
van Schalkwyk A, Kara P, Ebersohn K, Mather A, Annandale C, Venter E, Wallace D (2020) Potential link of single nucleotide polymorphisms to virulence of vaccine-associated field strains of lumpy skin disease virus in South Africa. Trans Emerg Dis 67:2946–2960. https://doi.org/10.1111/tbed.13670
doi: 10.1111/tbed.13670
Tran H, Truong A, Dang A, Ly D, Nguyen C, Chu N, Hoang T, Nguyen H, Nguyen V, Dang H (2021) Lumpy skin disease outbreaks in Vietnam, 2020. Trans Emerg Dis 68:977–980. https://doi.org/10.1111/tbed.14022
doi: 10.1111/tbed.14022
Flannery J, Shih B, Haga I, Ashby M, Corla A, King S, Freimanis G, Polo N, Tse A, Brackman C, Chan J, Pun P, Ferguson A, Law A, Lycett S, Batten C, Beard P (2021) A novel strain of lumpy skin disease virus causes clinical disease in cattle in Hong Kong. Trans Emerg Dis. https://doi.org/10.1111/tbed.14304
doi: 10.1111/tbed.14304
Agianniotaki E, Tasioudi K, Chaintoutis S, Iliadou P, Mangana-Vougiouka O, Kirtzalidou A, Alexandropoulos T, Sachpatzidis A, Plevraki E, Dovas C, Chondrokouki E (2017) Lumpy skin disease outbreaks in Greece during 2015–16, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains. Vet Microbiol 201:78–84. https://doi.org/10.1016/j.Vetmic.2016.12.037
doi: 10.1016/j.Vetmic.2016.12.037 pubmed: 28284627
Toplak I, Petrović T, Vidanović D, Lazić S, Šekler M, Manić M, Petrović M, Kuhar U (2017) Complete genome sequence of lumpy skin disease virus isolate Serbia/Bujanovac/2016, detected during an outbreak in the Balkan area. Genome Announc. https://doi.org/10.1128/genomea.00882-17
doi: 10.1128/genomea.00882-17 pubmed: 28860246 pmcid: 5578844
Di Felice E, Pinoni C, Khaiseb S, Camma C, Capobianco Dondona A, Polci A, Molini U, Monaco F (2020) Complete coding sequences of lumpy skin disease virus strains isolated from cutaneous lesions in Namibian cattle during 2016 outbreaks. Microbiol Resource Announc 9:e00124-e220. https://doi.org/10.1128/mra.00124-20
doi: 10.1128/mra.00124-20
Kumar N, Chander Y, Kumar R, Khandelwal N, Riyesh T, Chaudhary K, Shanmugasundaram K, Kumar S, Kumar A, Gupta M, Pal Y, Barua S, Tripathi B (2021) Isolation and characterization of lumpy skin disease virus from cattle in India. PLoS ONE 16:e0241022. https://doi.org/10.1371/journal.pone.0241022
doi: 10.1371/journal.pone.0241022 pubmed: 33428633 pmcid: 7799759
Lu G, Xie J, Luo J, Shao R, Jia K, Li S (2020) Lumpy skin disease outbreaks in China, since 3 August 2019. Transbound Emerg Dis 68:216–219. https://doi.org/10.1111/tbed.13898
doi: 10.1111/tbed.13898 pubmed: 33119963
Tuppurainen E, Dietze K, Wolff J, Bergmann H, Beltran-Alcrudo D, Fahrion A, Lamien C, Busch F, Sauter-Louis C, Conraths F, De Clercq K, Hoffmann B, Knauf S (2021) Review: vaccines and vaccination against lumpy skin disease. Vaccines (Basel) 9:1136. https://doi.org/10.3390/vaccines9101136
doi: 10.3390/vaccines9101136
Menasherow S, Rubinstein-Giuni M, Kovtunenko A, Eyngor Y, Fridgut O, Rotenberg D, Khinich Y, Stram Y (2014) Development of an assay to differentiate between virulent and vaccine strains of lumpy skin disease virus (LSDV). J Virol Methods 199:95–101. https://doi.org/10.1016/j.jviromet.2013.12.013
doi: 10.1016/j.jviromet.2013.12.013 pubmed: 24462845
Vidanović D, Šekler M, Petrović T, Debeljak Z, Vasković N, Matović K, Hoffmann B (2016) Real-time PCR assays for the specific detection of field Balkan strains of lumpy skin disease virus. Acta Vet 66:444–454. https://doi.org/10.1515/acve-2016-0038
doi: 10.1515/acve-2016-0038
Agianniotaki E, Chaintoutis S, Haegeman A, Tasioudi K, De Leeuw I, Katsoulos P, Sachpatzidis A, De Clercq K, Alexandropoulos T, Polizopoulou Z, Chondrokouki E, Dovas C (2017) Development and validation of a TaqMan probe-based real-time PCR method for the differentiation of wild type lumpy skin disease virus from vaccine virus strains. J Virol Methods 249:48–57. https://doi.org/10.1016/j.jviromet.2017.08.011
doi: 10.1016/j.jviromet.2017.08.011 pubmed: 28837841
Erster O, Rubinstein M, Menasherow S, Ivanova E, Venter E, Šekler M, Kolarevic M, Stram Y (2019) Importance of the lumpy skin disease virus (LSDV) LSDV126 gene in differential diagnosis and epidemiology and its possible involvement in attenuation. Adv Virol 164:2285–2295. https://doi.org/10.1007/s00705-019-04327-5
doi: 10.1007/s00705-019-04327-5
Sprygin A, Babin Y, Pestova Y, Kononova S, Byadovskaya O, Kononov A (2019) Complete genome sequence of the lumpy skin disease virus recovered from the first outbreak in the Northern Caucasus region of Russia in 2015. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01733-18
doi: 10.1128/MRA.01733-18 pubmed: 30834374 pmcid: 6386575
Boshra H, Truong T, Nfon C, Bowden T, Gerdts V, Tikoo S, Babiuk L, Kara P, Mather A, Wallace D, Babiuk S (2015) A lumpy skin disease virus deficient of an IL-10 gene homologue provides protective immunity against virulent capripoxvirus challenge in sheep and goats. Antivir Res 123:39–49. https://doi.org/10.1016/j.antiviral.2015.08.016
doi: 10.1016/j.antiviral.2015.08.016 pubmed: 26341190
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:547–1549
Babkin IV, Shchelkunov SN (2006) The time scale in poxvirus evolution. Mol Biol (Mosk.) 40:20–24
doi: 10.1134/S0026893306010031
Davies FG, Krauss H, Lund J, Taylor M (1971) The laboratory diagnosis of lumpy skin disease. Res Vet Sci 2:123–127
doi: 10.1016/S0034-5288(18)34204-8
Kara P, Mather A, Pretorius A, Chetty T, Babiuk S, Wallace D (2018) Characterisation of putative immunomodulatory gene knockouts of lumpy skin disease virus in cattle towards an improved vaccine. Vaccine 36:4708–4715. https://doi.org/10.1016/j.vaccine.2018.06.017
doi: 10.1016/j.vaccine.2018.06.017 pubmed: 29941325
Bankamp B, Takeda M, Zhang Y, Xu W, Rota P (2011) Genetic characterization of measles vaccine strains. J Infect Dis 204:S533–S548. https://doi.org/10.1093/infdis/jir097
doi: 10.1093/infdis/jir097 pubmed: 21666210
Piccirillo A, Lavezzo E, Niero G, Moreno A, Massi P, Franchin E, Toppo S, Salata C, Palù G (2016) Full genome sequence-based comparative study of wild-type and vaccine strains of infectious laryngotracheitis virus from Italy. PLoS ONE 11:e0149529. https://doi.org/10.1371/journal.pone.0149529
doi: 10.1371/journal.pone.0149529 pubmed: 26890525 pmcid: 4758665
Schade-Weskott M, van Schalkwyk A, Koekemoer JJO (2018) A correlation between capsid protein VP2 and the plaque morphology of African horse sickness virus in cell culture. Virus Genes 54(4):527–535. https://doi.org/10.1007/s11262-018-1567-y
doi: 10.1007/s11262-018-1567-y pubmed: 29730763
Barnard BJH, Munz E, Dumbbell K, Prozesky L (1994) Chapter 52: lumpy skin disease. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock. Oxford University Press, Oxford

Auteurs

Antoinette van Schalkwyk (A)

Agricultural Research Council-Onderstepoort Veterinary Institute, 100 old Soutpan Road, Onderstepoort, 0110, South Africa. vanSchalkwyka1@arc.agric.za.
Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa. vanSchalkwyka1@arc.agric.za.

Pravesh Kara (P)

Agricultural Research Council-Onderstepoort Veterinary Institute, 100 old Soutpan Road, Onderstepoort, 0110, South Africa.

Livio Heath (L)

Agricultural Research Council-Onderstepoort Veterinary Institute, 100 old Soutpan Road, Onderstepoort, 0110, South Africa.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH