Nicotine promotes the utility of short-term memory during visual search in macaque monkeys.
Acetylcholine receptor
Attentional inhibition
Central executive function
Foraging behavior
Mecamylamine
Nicotine
Nonhuman primate
Visual search
Working memory
Journal
Psychopharmacology
ISSN: 1432-2072
Titre abrégé: Psychopharmacology (Berl)
Pays: Germany
ID NLM: 7608025
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
18
02
2022
accepted:
27
06
2022
pubmed:
9
7
2022
medline:
20
8
2022
entrez:
8
7
2022
Statut:
ppublish
Résumé
The central cholinergic system is a major therapeutic target for restoring cognitive functions. Although manipulation of cholinergic signaling is known to alter working memory (WM), the underlying mechanism remains unclear. It is widely accepted that WM consists of multiple functional modules, one storing short-term memory and the other manipulating and utilizing it. A recently developed visual search task and a relevant model can be used to assess multiple components of WM during administration of acetylcholine receptor (AChR)-related substances. The effects of systemic administration of AChR-related agents on WM and eye movements were examined during the oculomotor foraging task. Three monkeys performing the task received an intramuscular injection of saline or the following AChR-related agents: nicotine (24 or 56 μg/kg), mecamylamine (nicotinic AChR antagonist, 1.0 mg/kg), oxotremorine (muscarinic AChR agonist, 3.0 µg/kg), and scopolamine (muscarinic AChR antagonist, 20 μg/kg). The task was to find a target among 15 identical objects by making eye movements within 6 s. The data were analyzed according to the foraging model that incorporated three parameters. Nicotine and mecamylamine significantly increased the utility but not the capacity of short-term memory, while muscarinic AChR-related agents did not alter any WM parameters. Further regression analyses with a mixed-effect model showed that the beneficial effect of nicotine on memory utility remained after considering eye movement variability, but the beneficial effect of mecamylamine disappeared. Nicotine improves visual search, mainly by increasing the utility of short-term memory, with minimal changes in oculomotor parameters.
Identifiants
pubmed: 35802143
doi: 10.1007/s00213-022-06186-6
pii: 10.1007/s00213-022-06186-6
doi:
Substances chimiques
Muscarinic Antagonists
0
Nicotinic Antagonists
0
Receptors, Muscarinic
0
Mecamylamine
6EE945D3OK
Nicotine
6M3C89ZY6R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3019-3029Subventions
Organisme : Ministry of Education, Culture, Sports, Science and Technology
ID : 18H05523
Organisme : Ministry of Education, Culture, Sports, Science and Technology
ID : 21H04810
Organisme : Ministry of Education, Culture, Sports, Science and Technology
ID : 19J21332
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aizawa H, Kobayashi Y, Yamamoto M, Isa T (1999) Injection of nicotine into the superior colliculus facilitates occurrence of express saccades in monkeys. J Neurophysiol 82:1642–1646
pubmed: 10482780
doi: 10.1152/jn.1999.82.3.1642
Arnsten AF, Goldman-Rakic PS (1985) Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230:1273–1276
pubmed: 2999977
doi: 10.1126/science.2999977
Azimi M, Oemisch M, Womelsdorf T (2020) Dissociation of nicotinic α7 and α4/β2 sub-receptor agonists for enhancing learning and attentional filtering in nonhuman primates. Psychopharmacology 237:997–1010
pubmed: 31865424
doi: 10.1007/s00213-019-05430-w
Baddeley A, Della Sala S (1996) Working memory and executive control. Philos Trans R Soc Lond B Biol Sci 351:1397–403 (discussion 1403-4)
pubmed: 8941951
doi: 10.1098/rstb.1996.0123
Baddeley AD, Hitch G (1974) Working Memory. In: Bower GH (ed) Psychology of learning and motivation. Academic Press, pp 47–89
Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21
pubmed: 20192813
pmcid: 3683564
doi: 10.1146/annurev-neuro-060909-152823
Buccafusco JJ, Terry AV (2004) Donepezil-induced improvement in delayed matching accuracy by young and old rhesus monkeys. J Mol Neurosci 24:85–91
pubmed: 15314255
doi: 10.1385/JMN:24:1:085
Buccafusco JJ, Jackson WJ, Jonnala RR, Terry AV Jr (1999) Differential improvement in memory-related task performance with nicotine by aged male and female rhesus monkeys. Behav Pharmacol 10:681–690
pubmed: 10780510
doi: 10.1097/00008877-199911000-00015
Castner SA, Smagin GN, Piser TM, Wang Y, Smith JS, Christian EP, Mrzljak L, Williams GV (2011) Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol Psychiatry 69:12–18
pubmed: 20965497
doi: 10.1016/j.biopsych.2010.08.006
Cools R, Arnsten AFT (2021) Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology.
Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36:96–108
pubmed: 25639674
pmcid: 4324614
doi: 10.1016/j.tips.2014.12.002
Disney AA (2021) Neuromodulatory control of early visual processing in macaque. Annu Rev vis Sci 7:181–199
pubmed: 34524875
doi: 10.1146/annurev-vision-100119-125739
Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233
pubmed: 16879488
doi: 10.1111/j.1474-8673.2006.00368.x
Ettinger U, Faiola E, Kasparbauer AM, Petrovsky N, Chan RC, Liepelt R, Kumari V (2017) Effects of nicotine on response inhibition and interference control. Psychopharmacology 234:1093–1111
pubmed: 28150023
doi: 10.1007/s00213-017-4542-8
Foster DJ, Choi DL, Conn PJ, Rook JM (2014) Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat 10:183–191
pubmed: 24511233
pmcid: 3913542
Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491
pubmed: 16876883
doi: 10.1016/j.tips.2006.07.004
Hahn B, Wells AK, Lenartowicz A, Yuille MB (2018) Nicotine effects on associative learning in human non-smokers. Neuropsychopharmacology 43:2190–2196
pubmed: 30131565
pmcid: 6135766
doi: 10.1038/s41386-018-0183-9
Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210:453–469
pubmed: 20414766
pmcid: 3151730
doi: 10.1007/s00213-010-1848-1
Hironaka N, Miyata H, Ando K (1992) Effects of psychoactive drugs on short-term memory in rats and rhesus monkeys. Jpn J Pharmacol 59:113–120
pubmed: 1507650
doi: 10.1254/jjp.59.113
Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203
pubmed: 11256080
doi: 10.1038/35058500
Kangas BD, Branch MN (2012) Relations among acute and chronic nicotine administration, short-term memory, and tactics of data analysis. J Exp Anal Behav 98:155–167
pubmed: 23008520
pmcid: 3449853
doi: 10.1901/jeab.2012.98-155
Katner SN, Davis SA, Kirsten AJ, Taffe MA (2004) Effects of nicotine and mecamylamine on cognition in rhesus monkeys. Psychopharmacology 175:225–240
pubmed: 15112030
pmcid: 2121304
doi: 10.1007/s00213-004-1804-z
Klein R (1988) Inhibitory tagging system facilitates visual search. Nature 334:430–431
pubmed: 3405288
doi: 10.1038/334430a0
Klein RM (2000) Inhibition of return. Trends Cogn Sci 4:138–147
pubmed: 10740278
doi: 10.1016/S1364-6613(00)01452-2
Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13:549–560
pubmed: 24903776
pmcid: 5818261
doi: 10.1038/nrd4295
Larrison AL, Briand KA, Sereno AB (2004) Nicotine improves antisaccade task performance without affecting prosaccades. Hum Psychopharmacol 19:409–419
pubmed: 15303245
doi: 10.1002/hup.604
Levin ED, Kim P, Meray R (1996) Chronic nicotine working and reference memory effects in the 16-arm radial maze: interactions with D1 agonist and antagonist drugs. Psychopharmacology 127:25–30
pubmed: 8880940
doi: 10.1007/BF02805971
Liu R, Crawford J, Callahan PM, Terry AV Jr, Constantinidis C, Blake DT (2017) Intermittent stimulation of the nucleus basalis of Meynert improves working memory in adult monkeys. Curr Biol 27:2640-2646.e4
pubmed: 28823679
pmcid: 5759307
doi: 10.1016/j.cub.2017.07.021
Müller HJ, von Mühlenen A (2000) Probing distractor inhibition in visual search: inhibition of return. J Exp Psychol Hum Percept Perform 26:1591–1605
pubmed: 11039487
doi: 10.1037/0096-1523.26.5.1591
Ott T, Nieder A (2017) Dopamine D2 receptors enhance population dynamics in primate prefrontal working memory circuits. Cereb Cortex 27:4423–4435
pubmed: 27591146
Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111
pubmed: 10759066
doi: 10.1016/S0301-0082(99)00045-3
Petrovsky N, Ettinger U, Quednow BB, Landsberg MW, Drees J, Lennertz L, Frommann I, Heilmann K, Sträter B, Kessler H, Dahmen N, Mössner R, Maier W, Wagner M (2013) Nicotine enhances antisaccade performance in schizophrenia patients and healthy controls. Int J Neuropsychopharmacol 16:1473–1481
pubmed: 23399382
doi: 10.1017/S1461145713000011
Posner MI, Cohen Y (1984) Components of visual orienting. In: Houma H, Bouwhuis DG (eds) Attention and performance X: control of language processes. Erlbaum, Hillsdale, pp 531–556
Reilly JL, Lencer R, Bishop JR, Keedy S, Sweeney JA (2008) Pharmacological treatment effects on eye movement control. Brain Cogn 68:415–435
pubmed: 19028266
pmcid: 3159189
doi: 10.1016/j.bandc.2008.08.026
Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267
pubmed: 11230877
doi: 10.1016/S0006-3223(00)01094-5
Rushforth SL, Steckler T, Shoaib M (2011) Nicotine improves working memory span capacity in rats following sub-chronic ketamine exposure. Neuropsychopharmacology 36:2774–2781
pubmed: 21956441
pmcid: 3230506
doi: 10.1038/npp.2011.224
Rycroft N, Hutton SB, Rusted JM (2006) The antisaccade task as an index of sustained goal activation in working memory: modulation by nicotine. Psychopharmacology 188:521–529
pubmed: 16896958
doi: 10.1007/s00213-006-0455-7
Samuel AG, Kat D (2003) Inhibition of return: a graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychon Bull Rev 10:897–906
pubmed: 15000537
doi: 10.3758/BF03196550
Sarter M, Lustig C (2019) Cholinergic double duty: cue detection and attentional control. Curr Opin Psychol 29:102–107
pubmed: 30711909
pmcid: 6609491
doi: 10.1016/j.copsyc.2018.12.026
Sawagashira R, Tanaka M (2021) Ketamine-induced alteration of working memory utility during oculomotor foraging task in monkeys. eNeuro 8:ENEURO.0403–20.2021
Sherr JD, Myers C, Avila MT, Elliott A, Blaxton TA, Thaker GK (2002) The effects of nicotine on specific eye tracking measures in schizophrenia. Biol Psychiatry 52:721–728
pubmed: 12372663
doi: 10.1016/S0006-3223(02)01342-2
Snyder JJ, Kingstone A (2007) Inhibition of return at multiple locations and its impact on visual search. Vis Cogn 15:238–256
doi: 10.1080/13506280600724892
Spinelli S, Ballard T, Feldon J, Higgins GA, Pryce CR (2006) Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys. Neuropharmacology 51:238–250
pubmed: 16678864
doi: 10.1016/j.neuropharm.2006.03.012
Sultana R, Ameno K, Jamal M, Miki T, Tanaka N, Ono J, Kinoshita H, Nakamura Y (2013) Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze. Neurol Sci 34:891–897
pubmed: 22773025
doi: 10.1007/s10072-012-1149-z
Sun X, Jin L, Ling P (2012) Review of drugs for Alzheimer’s disease. Drug Discov Ther 6:285–290
pubmed: 23337815
Thiele A, Bellgrove MA (2018) Neuromodulation of attention. Neuron 97:769–785
pubmed: 29470969
pmcid: 6204752
doi: 10.1016/j.neuron.2018.01.008
Upright NA, Baxter MG (2021) Effects of nicotinic antagonists on working memory performance in young rhesus monkeys. Neurobiol Learn Mem 184:107505
pubmed: 34425219
doi: 10.1016/j.nlm.2021.107505
Vardigan JD, Cannon CE, Puri V, Dancho M, Koser A, Wittmann M, Kuduk SD, Renger JJ, Uslaner JM (2015) Improved cognition without adverse effects: novel M1 muscarinic potentiator compares favorably to donepezil and xanomeline in rhesus monkey. Psychopharmacology 232:1859–1866
pubmed: 25491927
doi: 10.1007/s00213-014-3813-x
Veale R, Hafed ZM, Yoshida M (2017) How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos Trans R Soc Lond B Biol Sci 372.
Vijayraghavan S, Major AJ, Everling S (2016) Dopamine D1 and D2 receptors make dissociable contributions to dorsolateral prefrontal cortical regulation of rule-guided oculomotor behavior. Cell Rep 16:805–816
pubmed: 27373147
doi: 10.1016/j.celrep.2016.06.031
Wang Z, Klein RM (2010) Searching for inhibition of return in visual search: a review. Vision Res 50:220–228
pubmed: 19932128
doi: 10.1016/j.visres.2009.11.013
Wang M, Vijayraghavan S, Goldman-Rakic PS (2004) Selective D2 receptor actions on the functional circuitry of working memory. Science 303:853–856
pubmed: 14764884
doi: 10.1126/science.1091162
Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575
pubmed: 7637804
doi: 10.1038/376572a0
Withey SL, Doyle MR, Bergman J, Desai RI (2018) Involvement of nicotinic receptor subtypes in the behavioral effects of nicotinic drugs in squirrel monkeys. J Pharmacol Exp Ther 366:397–409
pubmed: 29784663
pmcid: 6053592
doi: 10.1124/jpet.118.248070
Witkin JM (1989) Central and peripheral muscarinic actions of physostigmine and oxotremorine on avoidance responding of squirrel monkeys. Psychopharmacology 97:376–382
pubmed: 2497488
doi: 10.1007/BF00439454
Witte EA, Davidson MC, Marrocco RT (1997) Effects of altering brain cholinergic activity on covert orienting of attention: comparison of monkey and human performance. Psychopharmacology 132:324–334
pubmed: 9298509
doi: 10.1007/s002130050352