Estimation of Tibiofemoral Joint Contact Forces Using Foot Loads during Continuous Passive Motions.
CPM
ranges of motion
rehabilitation
tibiofemoral forces
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
30 Jun 2022
30 Jun 2022
Historique:
received:
15
05
2022
revised:
21
06
2022
accepted:
27
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
14
7
2022
Statut:
epublish
Résumé
Continuous passive motion (CPM) machines are commonly used after various knee surgeries, but information on tibiofemoral forces (TFFs) during CPM cycles is limited. This study aimed to explore the changing trend of TFFs during CPM cycles under various ranges of motion (ROM) and body weights (BW) by establishing a two-dimensional mathematical model. TFFs were estimated by using joint angles, foot load, and leg−foot weight. Eleven healthy male participants were tested with ROM ranging from 0° to 120°. The values of the peak TFFs during knee flexion were higher than those during knee extension, varying nonlinearly with ROM. BW had a significant main effect on the peak TFFs and tibiofemoral shear forces, while ROM had a limited effect on the peak TFFs. No significant interaction effects were observed between BW and ROM for each peak TFF, whereas a strong linear correlation existed between the peak tibiofemoral compressive forces (TFCFs) and the peak resultant TFFs (R2 = 0.971, p < 0.01). The proposed method showed promise in serving as an input for optimizing rehabilitation devices.
Identifiants
pubmed: 35808441
pii: s22134947
doi: 10.3390/s22134947
pmc: PMC9269803
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
J Biomech. 2017 Jan 25;51:128-132
pubmed: 27914627
J Occup Med Toxicol. 2014 Dec 02;9(1):36
pubmed: 25505490
Am J Sports Med. 1989 Jan-Feb;17(1):49-54
pubmed: 2929836
Med Eng Phys. 2018 Feb;52:31-40
pubmed: 29269224
Skeletal Radiol. 2012 Jun;41(6):633-41
pubmed: 21887596
J Orthop Sports Phys Ther. 1992;15(3):132-40
pubmed: 18796785
J Biomech Eng. 2016 Feb;138(2):021016
pubmed: 26720762
Clin Biomech (Bristol, Avon). 2016 Feb;32:102-7
pubmed: 26777272
Appl Ergon. 2016 Mar;53 Pt A:44-51
pubmed: 26674403
J Shoulder Elbow Surg. 2015 Oct;24(10):1602-6
pubmed: 26163280
J Healthc Eng. 2018 Feb 11;2018:6570617
pubmed: 29610656
J Biomech. 2019 Apr 18;87:206-210
pubmed: 30905404
Scand J Surg. 2010;99(1):45-9
pubmed: 20501358
Cartilage. 2010 Oct;1(4):276-86
pubmed: 26069559
Med Eng Phys. 2018 Apr;54:56-64
pubmed: 29487037
J Rehabil Assist Technol Eng. 2018 Jan 12;5:2055668317752088
pubmed: 31191923
J Bone Joint Surg Am. 2016 Jan 20;98(2):e6
pubmed: 26791039
Clin Biomech (Bristol, Avon). 2001 Mar;16(3):229-36
pubmed: 11240058
J Biomech. 2007;40 Suppl 1:S11-7
pubmed: 17462659
Phys Sportsmed. 2013 Nov;41(4):53-63
pubmed: 24231597
Sensors (Basel). 2020 Mar 06;20(5):
pubmed: 32155828
Gait Posture. 2015 Feb;41(2):624-9
pubmed: 25701011
Acta Orthop Scand. 1986 Feb;57(1):41-6
pubmed: 3962631
J Biomech. 2019 Sep 20;94:165-169
pubmed: 31427093
Contemp Clin Trials. 2018 Jun;69:1-9
pubmed: 29617634
Arch Phys Med Rehabil. 2019 Sep;100(9):1763-1778
pubmed: 30831093
J Orthop Res. 1989;7(4):530-7
pubmed: 2738770
Sensors (Basel). 2019 Aug 25;19(17):
pubmed: 31450664
PLoS One. 2014 Jan 23;9(1):e86035
pubmed: 24465856
Clin Orthop Relat Res. 2009 Oct;467(10):2656-61
pubmed: 19247728
Sportverletz Sportschaden. 2021 Mar;35(1):18-23
pubmed: 30791084
J Adv Res. 2019 Sep 19;21:15-24
pubmed: 31641534
J Biomech. 1999 May;32(5):539-44
pubmed: 10327008
Clin Rehabil. 2011 Apr;25(4):291-302
pubmed: 20943710
J Orthop Surg Res. 2020 Oct 9;15(1):465
pubmed: 33036637
J Biomech Eng. 2020 Aug 1;142(8):
pubmed: 31913450
J Biomech. 2010 Aug 10;43(11):2164-73
pubmed: 20537336
J Biomech Eng. 2021 Jan 1;143(1):
pubmed: 32734303
Foot (Edinb). 2019 Jun;39:1-10
pubmed: 30851649
Med Biol Eng Comput. 2018 Oct;56(10):1781-1792
pubmed: 29550963
PLoS One. 2018 Nov 5;13(11):e0206859
pubmed: 30395591