Chromosomal inversions can limit adaptation to new environments.

adaptive constraints balancing selection genome architecture linkage population divergence recombination supergenes

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
09 2022
Historique:
revised: 04 07 2022
received: 03 05 2022
accepted: 05 07 2022
pubmed: 11 7 2022
medline: 24 8 2022
entrez: 10 7 2022
Statut: ppublish

Résumé

Chromosomal inversions are often thought to facilitate local adaptation and population divergence because they can link multiple adaptive alleles into non-recombining genomic blocks. Selection should thus be more efficient in driving inversion-linked adaptive alleles to high frequency in a population, particularly in the face of maladaptive gene flow. But what if ecological conditions and hence selection on inversion-linked alleles change? Reduced recombination within inversions could then constrain the formation of optimal combinations of pre-existing alleles under these new ecological conditions. Here, we outline this idea of inversions limiting adaptation and divergence when ecological conditions change across time or space. We reason and use simulations to illustrate that the benefit of inversions for local adaptation and divergence under one set of ecological conditions can come with a concomitant constraint for adaptation to novel sets of ecological conditions. This limitation of inversions to adaptation may contribute to the maintenance of polymorphism within species.

Identifiants

pubmed: 35810344
doi: 10.1111/mec.16609
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4435-4439

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Baer, C. F., Miyamoto, M. M., & Denver, D. R. (2007). Mutation rate variation in multicellular eukaryotes: Causes and consequences. Nature Reviews Genetics, 8(8), 619-631. https://doi.org/10.1038/nrg2158
Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1), 38-44. https://doi.org/10.1016/j.tree.2007.09.008
Bell, M. A., & Foster, S. A. (1994). The evolutionary biology of the threespine stickleback. Oxford University.
Berdan, E. L., Blanckaert, A., Butlin, R. K., & Bank, C. (2021). Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genetics, 17(3), e1009411. https://doi.org/10.1371/journal.pgen.1009411
Charlesworth, B., & Barton, N. H. (2018). The spread of an inversion with migration and selection. Genetics, 208(1), 377-382. https://doi.org/10.1534/genetics.117.300426
Chaturvedi, A., Zhou, J., JAM, R., Czypionka, T., Orsini, L., Jackson, C. E., Spanier, K. I., Shaw, J. R., Colbourne, J. K., & De Meester, L. (2021). Extensive standing genetic variation from a small number of founders enables rapid adaptation in daphnia. Nature Communications, 12(1), 4306. https://doi.org/10.1038/s41467-021-24581-z
Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110(2), 155-171. https://doi.org/10.1016/s0022-5193(84)80050-8
De Lafontaine, G., Napier, J. D., Petit, R. J., & Hu, F. S. (2018). Invoking adaptation to decipher the genetic legacy of past climate change. Ecology, 99(7), 1530-1546. https://doi.org/10.1002/ecy.2382
Faria, R., Johannesson, K., Butlin, R. K., & Westram, A. M. (2019). Evolving inversions. Trends in Ecology & Evolution, 34(3), 239-248. https://doi.org/10.1016/j.tree.2018.12.005
Feder, J. L., & Nosil, P. (2009). Chromosomal inversions and species differences: When are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions? Evolution, 63(12), 3061-3075. https://doi.org/10.1111/j.1558-5646.2009.00786.x
Gilbert, K. J., Pouyet, F., Excoffier, L., & Peischl, S. (2020). Transition from Background selection to associative overdominance promotes diversity in regions of low recombination. Current Biology, 30(1), 101-107.e103. https://doi.org/10.1016/j.cub.2019.11.063
Haenel, Q., Roesti, M., Moser, D., MacColl, A. D. C., & Berner, D. (2019). Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evolution Letters, 3(1), 28-42. https://doi.org/10.1002/evl3.99
Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations beyond the Wright-Fisher model. Molecular Biology and Evolution, 36(3), 632-637. https://doi.org/10.1093/molbev/msy228
Hill, W., & Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetical Research, 8(3), 269-294. https://doi.org/10.1017/S0016672300010156
Jay, P., Chouteau, M., Whibley, A., Bastide, H., Parrinello, H., Llaurens, V., & Joron, M. (2021). Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nature Genetics, 53(3), 288-293. https://doi.org/10.1038/s41588-020-00771-1
Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., Swofford, R., Pirun, M., Zody, M. C., White, S., Birney, E., Searle, S., Schmutz, J., Grimwood, J., Dickson, M. C., Myers, R. M., Miller, C. T., Summers, B. R., Knecht, A. K., … Kingsley, D. M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484(7392), 55-61. https://doi.org/10.1038/nature10944
Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation. Genetics, 173(1), 419-434. https://doi.org/10.1534/genetics.105.047985
Koch, E. L., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., Lemmon, E. M., Johannesson, K., & Butlin, R. K. (2021). Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters, 5(3), 196-213. https://doi.org/10.1002/evl3.227
Korunes, K. L., & Noor, M. A. F. (2017). Gene conversion and linkage: Effects on genome evolution and speciation. Molecular Ecology, 26(1), 351-364.
Lai, Y. T., CKL, Y., Omland, K. E., Pang, E. L., Hao, Y., Liao, B. Y., Cao, H. F., Zhang, B. W., Yeh, C. F., Hung, C. M., Hung, H. Y., Yang, M. Y., Liang, W., Hsu, Y. C., Yao, C. T., Dong, L., Lin, K., & Li, S. H. (2019). Standing genetic variation as the predominant source for adaptation of a songbird. Proceedings of the National Academy of Sciences of the United States of America, 116(6), 2152-2157. https://doi.org/10.1073/pnas.1813597116
Lescak, E. A., Bassham, S. L., Catchen, J., Gelmond, O., Sherbick, M. L., von Hippel, F. A., & Cresko, W. A. (2015). Evolution of stickleback in 50 years on earthquake-uplifted islands. Proceedings of the National Academy of Sciences of the United States of America, 112(52), E7204-E7212. https://doi.org/10.1073/pnas.1512020112
Liu, Z., Roesti, M., Marques, D., Hiltbrunner, M., Saladin, V., & Peichel, C. L. (2021). Chromosomal fusions facilitate adaptation to divergent environments in threespine stickleback. Molecular Biology and Evolution, 39(2), msab358. https://doi.org/10.1093/molbev/msab358
Louis, M., Galimberti, M., Archer, F., Berrow, S., Brownlow, A., Fallon, R., Nykänen, M., O'Brien, J., Roberston, K. M., Rosel, P. E., Simon-Bouhet, B., Wegmann, D., Fontaine, M. C., Foote, A. D., & Gaggiotti, O. E. (2021). Selection on ancestral genetic variation fuels repeated ecotype formation in bottlenose dolphins. Science Advances, 7(44), eabg1245. https://doi.org/10.1126/sciadv.abg1245
Maynard Smith, J. (1978). The evolution of sex. Cambridge University Press.
Messer, P. W., & Petrov, D. A. (2013). Population genomics of rapid adaptation by soft selective sweeps. Trends in Ecology & Evolution, 28(11), 659-669. https://doi.org/10.1016/j.tree.2013.08.003
Morales, H. E., Faria, R., Johannesson, K., Larsson, T., Panova, M., Westram, A. M., & Butlin, R. K. (2019). Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances, 5(12), eaav9963. https://doi.org/10.1126/sciadv.aav9963
Navarro, A., Betrán, E., Barbadilla, A., & Ruiz, A. (1997). Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics, 146(2), 695-709. https://doi.org/10.1093/genetics/146.2.695
Orr, H. A. (1998). Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics, 149(4), 2099-2104. https://doi.org/10.1093/genetics/149.4.2099
Otto, S. P. (2009). The evolutionary enigma of sex. The American Naturalist, 174(S1), S1-S14. https://doi.org/10.1086/599084
Owens, G. L., Todesco, M., Bercovich, N., Légaré, J.-S., Mitchell, N., Whitney, K. D., & Rieseberg, L. H. (2021). Standing variation rather than recent adaptive introgression probably underlies differentiation of the texanus subspecies of Helianthus annuus. Molecular Ecology, 30(23), 6229-6245. https://doi.org/10.1111/mec.16008
Pavličev, M., & Cheverud, J. M. (2015). Constraints evolve: Context dependency of gene effects allows evolution of pleiotropy. Annual Review of Ecology, Evolution, and Systematics, 46(1), 413-434. https://doi.org/10.1146/annurev-ecolsys-120213-091721
Peichel, C. L., & Marques, D. A. (2017). The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1713), 20150486. https://doi.org/10.1098/rstb.2015.0486
Reid, K., Bell, M. A., & Veeramah, K. R. (2021). Threespine stickleback: A model system for evolutionary genomics. Annual Review of Genomics and Human Genetics, 22(1), 357-383. https://doi.org/10.1146/annurev-genom-111720-081402
Renaut, S., Nolte, A. W., Rogers, S. M., Derome, N., & Bernatchez, L. (2011). SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.). Molecular Ecology, 20(3), 545-559. https://doi.org/10.1111/j.1365-294X.2010.04952.x
Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. Trends in Ecology & Evolution, 16(7), 351-358. https://doi.org/10.1016/s0169-5347(01)02187-5
Roesti, M., Kueng, B., Moser, D., & Berner, D. (2015). The genomics of ecological vicariance in threespine stickleback fish. Nature Communications, 6, 8767. https://doi.org/10.1038/ncomms9767
Schmidt, C., Fransz, P., Rönspies, M., Dreissig, S., Fuchs, J., Heckmann, S., Houben, A., & Puchta, H. (2020). Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nature Communications, 11(1), 4418. https://doi.org/10.1038/s41467-020-18277-z
Sturtevant, A. H., & Beadle, G. W. (1936). The relations of inversions in the X chromosome of Drosophila melanogaster to crossing over and disjunction. Genetics, 21(5), 554-604. https://doi.org/10.1093/genetics/21.5.554
Wellenreuther, M., & Bernatchez, L. (2018). Eco-evolutionary genomics of chromosomal inversions. Trends in Ecology & Evolution, 33(6), 427-440. https://doi.org/10.1016/j.tree.2018.04.002
Whiting, J. R., Paris, J. R., van der Zee, M. J., Parsons, P. J., Weigel, D., & Fraser, B. A. (2021). Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies. PLoS Genetics, 17(5), e1009566. https://doi.org/10.1371/journal.pgen.1009566

Auteurs

Marius Roesti (M)

Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.

Kimberly J Gilbert (KJ)

Department of Biology, University of Fribourg, Fribourg, Switzerland.

Kieran Samuk (K)

Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH