Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
07 2022
Historique:
received: 05 01 2021
accepted: 25 05 2022
pubmed: 12 7 2022
medline: 15 7 2022
entrez: 11 7 2022
Statut: ppublish

Résumé

The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.

Identifiants

pubmed: 35817961
doi: 10.1038/s41556-022-00947-3
pii: 10.1038/s41556-022-00947-3
pmc: PMC7613098
mid: EMS145397
doi:

Substances chimiques

Basic Helix-Loop-Helix Transcription Factors 0
Chromatin 0
Homeodomain Proteins 0
Mesp1 protein, mouse 0
Transcription Factors 0
Zic3 protein, mouse 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1114-1128

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : European Research Council
ID : 885093
Pays : International
Organisme : Medical Research Council
ID : MC_PC_17230
Pays : United Kingdom
Organisme : Cancer Research UK
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).
pubmed: 23839576 pmcid: 3757945 doi: 10.1038/nrm3619
Harvey, R. P. Patterning the vertebrate heart. Nat. Rev. Genet. 3, 544–556 (2002).
pubmed: 12094232 doi: 10.1038/nrg843
Meilhac, S. M. & Buckingham, M. E. The deployment of cell lineages that form the mammalian heart. Nat. Rev. Cardiol. 15, 705–724 (2018).
pubmed: 30266935 doi: 10.1038/s41569-018-0086-9
Protze, S. I., Lee, J. H. & Keller, G. M. Human pluripotent stem cell-derived cardiovascular cells: from developmental biology to therapeutic applications. Cell Stem Cell 25, 311–327 (2019).
pubmed: 31491395 doi: 10.1016/j.stem.2019.07.010
Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).
pubmed: 12084585 doi: 10.1016/S0735-1097(02)01886-7
Srivastava, D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048 (2006).
pubmed: 16990131 doi: 10.1016/j.cell.2006.09.003
Bruneau, B. G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).
pubmed: 18288184 doi: 10.1038/nature06801
Saga, Y. et al. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122, 2769–2778 (1996).
pubmed: 8787751 doi: 10.1242/dev.122.9.2769
Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).
pubmed: 10393122 doi: 10.1242/dev.126.15.3437
Kitajima, S., Takagi, A., Inoue, T. & Saga, Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127, 3215–3226 (2000).
pubmed: 10887078 doi: 10.1242/dev.127.15.3215
Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014).
pubmed: 25150979 pmcid: 6984965 doi: 10.1038/ncb3024
Lescroart, F. et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 359, 1177–1181 (2018).
pubmed: 29371425 pmcid: 6556615 doi: 10.1126/science.aao4174
Bondue, A. et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3, 69–84 (2008).
pubmed: 18593560 doi: 10.1016/j.stem.2008.06.009
David, R. et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol. 10, 338–345 (2008).
pubmed: 18297060 doi: 10.1038/ncb1696
Lindsley, R. C. et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial–mesenchymal transition in differentiating ESCs. Cell Stem Cell 3, 55–68 (2008).
pubmed: 18593559 pmcid: 2497439 doi: 10.1016/j.stem.2008.04.004
Chan, S. S. et al. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12, 587–601 (2013).
pubmed: 23642367 pmcid: 3646300 doi: 10.1016/j.stem.2013.03.004
Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife 3, e03848 (2014).
Zhang, Q. et al. Unveiling complexity and multipotentiality of early heart fields. Circ. Res. 129, 474–487 (2021).
pubmed: 34162224 doi: 10.1161/CIRCRESAHA.121.318943
Ivanovitch, K. et al. Ventricular, atrial and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. Preprint at bioRxiv https://doi.org/2020.2007.2012.198994 (2020).
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).
pubmed: 21106759 pmcid: 3003124 doi: 10.1073/pnas.1016071107
Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).
pubmed: 24614317 doi: 10.1038/nrg3682
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Wapinski, O. L. et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621–635 (2013).
pubmed: 24243019 doi: 10.1016/j.cell.2013.09.028
Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).
pubmed: 25892221 pmcid: 4409934 doi: 10.1016/j.cell.2015.03.017
Paige, S. L. et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151, 221–232 (2012).
pubmed: 22981225 pmcid: 3462257 doi: 10.1016/j.cell.2012.08.027
Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).
pubmed: 22981692 pmcid: 3462286 doi: 10.1016/j.cell.2012.07.035
Pikkarainen, S., Tokola, H., Kerkela, R. & Ruskoaho, H. GATA transcription factors in the developing and adult heart. Cardiovasc. Res. 63, 196–207 (2004).
pubmed: 15249177 doi: 10.1016/j.cardiores.2004.03.025
George, R. M. & Firulli, A. B. Hand factors in cardiac development. Anat. Rec. 302, 101–107 (2019).
doi: 10.1002/ar.23910
Greulich, F., Rudat, C. & Kispert, A. Mechanisms of T-box gene function in the developing heart. Cardiovasc. Res. 91, 212–222 (2011).
pubmed: 21498422 doi: 10.1093/cvr/cvr112
Kume, T. Novel insights into the differential functions of Notch ligands in vascular formation. J. Angiogenes. Res. 1, 8 (2009).
pubmed: 20016694 pmcid: 2794854 doi: 10.1186/2040-2384-1-8
Oda, M. et al. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet. 9, e1003574 (2013).
pubmed: 23825962 pmcid: 3694845 doi: 10.1371/journal.pgen.1003574
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
pubmed: 23582322 pmcid: 3653129 doi: 10.1016/j.cell.2013.03.035
Bondue, A. et al. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. J. Cell Biol. 192, 751–765 (2011).
pubmed: 21383076 pmcid: 3051813 doi: 10.1083/jcb.201007063
Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).
pubmed: 21295278 doi: 10.1016/j.stem.2010.12.008
Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
pubmed: 18497825 pmcid: 5328678 doi: 10.1038/nature06968
Gebbia, M. et al. X-linked situs abnormalities result from mutations in ZIC3. Nat. Genet. 17, 305–308 (1997).
pubmed: 9354794 doi: 10.1038/ng1197-305
Ware, S. M. et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am. J. Hum. Genet. 74, 93–105 (2004).
pubmed: 14681828 doi: 10.1086/380998
Cowan, J., Tariq, M. & Ware, S. M. Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum. Mutat. 35, 66–75 (2014).
pubmed: 24123890 pmcid: 3946352 doi: 10.1002/humu.22457
Purandare, S. M. et al. A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129, 2293–2302 (2002).
pubmed: 11959836 doi: 10.1242/dev.129.9.2293
Ware, S. M., Harutyunyan, K. G. & Belmont, J. W. Zic3 is critical for early embryonic patterning during gastrulation. Dev. Dyn. 235, 776–785 (2006).
pubmed: 16397896 doi: 10.1002/dvdy.20668
Zhu, L. et al. Identification of a novel role of ZIC3 in regulating cardiac development. Hum. Mol. Genet. 16, 1649–1660 (2007).
pubmed: 17468179 doi: 10.1093/hmg/ddm106
Elms, P. et al. Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr. Patterns 4, 505–511 (2004).
pubmed: 15261827 doi: 10.1016/j.modgep.2004.03.003
Xu, J. et al. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 38, 741–755 (2020).
pubmed: 32129551 pmcid: 7891398 doi: 10.1002/stem.3168
Lim, L. S., Hong, F. H., Kunarso, G. & Stanton, L. W. The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem Cells 28, 1961–1969 (2010).
pubmed: 20872845 doi: 10.1002/stem.527
Lim, L. S. et al. Zic3 is required for maintenance of pluripotency in embryonic stem cells. Mol. Biol. Cell 18, 1348–1358 (2007).
pubmed: 17267691 pmcid: 1838990 doi: 10.1091/mbc.e06-07-0624
Perl, E. & Waxman, J. S. Retinoic acid signaling and heart development. Subcell. Biochem. 95, 119–149 (2020).
pubmed: 32297298 doi: 10.1007/978-3-030-42282-0_5
Bertrand, N. et al. Hox genes define distinct progenitor sub-domains within the second heart field. Dev. Biol. 353, 266–274 (2011).
pubmed: 21385575 pmcid: 3115524 doi: 10.1016/j.ydbio.2011.02.029
Ryckebusch, L. et al. Retinoic acid deficiency alters second heart field formation. Proc. Natl Acad. Sci. USA 105, 2913–2918 (2008).
pubmed: 18287057 pmcid: 2268559 doi: 10.1073/pnas.0712344105
Deshwar, A. R., Chng, S. C., Ho, L., Reversade, B. & Scott, I. C. The Apelin receptor enhances Nodal/TGFbeta signaling to ensure proper cardiac development. eLife 5, e13758 (2016).
Scott, I. C. et al. The G protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Dev. Cell 12, 403–413 (2007).
pubmed: 17336906 doi: 10.1016/j.devcel.2007.01.012
Zeng, X. X., Wilm, T. P., Sepich, D. S. & Solnica-Krezel, L. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev. Cell 12, 391–402 (2007).
pubmed: 17336905 doi: 10.1016/j.devcel.2007.01.011
Klootwijk, R. et al. A deletion encompassing Zic3 in bent tail, a mouse model for X-linked neural tube defects. Hum. Mol. Genet. 9, 1615–1622 (2000).
pubmed: 10861288 doi: 10.1093/hmg/9.11.1615
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
pubmed: 30787436 pmcid: 6522369 doi: 10.1038/s41586-019-0933-9
Guibentif, C. et al. Diverse routes toward early somites in the mouse embryo. Dev. Cell 56, 141–153 e146 (2021).
pubmed: 33308481 pmcid: 7808755 doi: 10.1016/j.devcel.2020.11.013
Zaret, K. S. Pioneer transcription factors initiating gene network changes. Annu. Rev. Genet. 54, 367–385 (2020).
pubmed: 32886547 pmcid: 7900943 doi: 10.1146/annurev-genet-030220-015007
Zaret, K. S. Pioneering the chromatin landscape. Nat. Genet. 50, 167–169 (2018).
pubmed: 29374252 doi: 10.1038/s41588-017-0038-z
Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).
pubmed: 22056668 pmcid: 3219227 doi: 10.1101/gad.176826.111
Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).
pubmed: 27246709 pmcid: 6514407 doi: 10.1242/dev.133900
Liu, Z. & Kraus, W. L. Catalytic-Independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Mol. Cell 65, 589–603 (2017).
pubmed: 28212747 pmcid: 5319724 doi: 10.1016/j.molcel.2017.01.017
Swinstead, E. E. et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605 (2016).
pubmed: 27062924 pmcid: 4842147 doi: 10.1016/j.cell.2016.02.067
Donaghey, J. et al. Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nat. Genet. 50, 250–258 (2018).
pubmed: 29358654 pmcid: 6517675 doi: 10.1038/s41588-017-0034-3
Mayran, A. et al. Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening. Nat. Commun. 10, 3807 (2019).
pubmed: 31444346 pmcid: 6707328 doi: 10.1038/s41467-019-11791-9
Cernilogar, F. M. et al. Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Res. 47, 9069–9086 (2019).
pubmed: 31350899 pmcid: 6753583 doi: 10.1093/nar/gkz627
Sutherland, M. J., Wang, S., Quinn, M. E., Haaning, A. & Ware, S. M. Zic3 is required in the migrating primitive streak for node morphogenesis and left-right patterning. Hum. Mol. Genet. 22, 1913–1923 (2013).
pubmed: 23303524 pmcid: 3633368 doi: 10.1093/hmg/ddt001
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Tarbell, E. D. & Liu, T. HMMRATAC: a hidden Markov ModeleR for ATAC-seq. Nucleic Acids Res. 47, e91 (2019).
pubmed: 31199868 pmcid: 6895260 doi: 10.1093/nar/gkz533
Chiapparo, G. et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J. Cell Biol. 213, 463–477 (2016).
pubmed: 27185833 pmcid: 4878090 doi: 10.1083/jcb.201505082
Ran, F. A. et al. Double nicking by RNA-guided CRISPR-Cas9n for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).
pubmed: 23992846 pmcid: 3856256 doi: 10.1016/j.cell.2013.08.021
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).
doi: 10.1002/0471142727.mb2129s109
Sambrook, J. & Russell, D. W. Identification of associated proteins by coimmunoprecipitation. CSH Protoc. 2006, pdb.prot3898 (2006).
Roux, M., Laforest, B., Capecchi, M., Bertrand, N. & Zaffran, S. Hoxb1 regulates proliferation and differentiation of second heart field progenitors in pharyngeal mesoderm and genetically interacts with Hoxa1 during cardiac outflow tract development. Dev. Biol. 406, 247–258 (2015).
pubmed: 26284287 doi: 10.1016/j.ydbio.2015.08.015
de Soysa, T. Y. et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature 572, 120–124 (2019).
pubmed: 31341279 pmcid: 6719697 doi: 10.1038/s41586-019-1414-x
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer Publishing Company, Incorporated, 2009).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15, 284 (2014).
pubmed: 24735413 pmcid: 4028082 doi: 10.1186/1471-2164-15-284
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019).
pubmed: 30808370 pmcid: 6391789 doi: 10.1186/s13059-019-1642-2

Auteurs

Xionghui Lin (X)

Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.

Benjamin Swedlund (B)

Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.

Mai-Linh N Ton (MN)

Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.

Shila Ghazanfar (S)

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.

Carolina Guibentif (C)

Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden.

Catherine Paulissen (C)

Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.

Elodie Baudelet (E)

Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.

Elise Plaindoux (E)

Aix Marseille Université, INSERM, MMG U1251, Marseille, France.

Younes Achouri (Y)

Université Catholique de Louvain, Institut de Duve, Brussels, Belgium.

Emilie Calonne (E)

Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium.

Christine Dubois (C)

Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.

William Mansfield (W)

Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.

Stéphane Zaffran (S)

Aix Marseille Université, INSERM, MMG U1251, Marseille, France.

John C Marioni (JC)

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.

Francois Fuks (F)

Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium.

Berthold Göttgens (B)

Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.

Fabienne Lescroart (F)

Aix Marseille Université, INSERM, MMG U1251, Marseille, France. fabienne.lescroart@univ-amu.fr.

Cédric Blanpain (C)

Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium. cedric.blanpain@ulb.ac.be.
WELBIO, Université Libre de Bruxelles, Brussels, Belgium. cedric.blanpain@ulb.ac.be.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH