Alternative splicing as a source of phenotypic diversity.


Journal

Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779

Informations de publication

Date de publication:
11 2022
Historique:
accepted: 13 06 2022
pubmed: 13 7 2022
medline: 20 10 2022
entrez: 12 7 2022
Statut: ppublish

Résumé

A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.

Identifiants

pubmed: 35821097
doi: 10.1038/s41576-022-00514-4
pii: 10.1038/s41576-022-00514-4
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

697-710

Subventions

Organisme : Wellcome Trust
ID : 206194
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 218328
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R007500/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 209368/Z/17/Z
Pays : United Kingdom

Informations de copyright

© 2022. Springer Nature Limited.

Références

King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).
pubmed: 1090005 doi: 10.1126/science.1090005
Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol. 18, 102–114 (2017).
pubmed: 27847391 doi: 10.1038/nrm.2016.139
Stern, D. L. Perspective: Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).
pubmed: 11005278 doi: 10.1111/j.0014-3820.2000.tb00544.x
Carroll, S. B. Endless forms: the evolution of gene regulation and morphological diversity. Cell 101, 577–580 (2000).
pubmed: 10892643 doi: 10.1016/S0092-8674(00)80868-5
Doebley, J. & Lukens, L. Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082 (1998).
pubmed: 9668128 pmcid: 1464652 doi: 10.1105/tpc.10.7.1075
Monlong, J., Calvo, M., Ferreira, P. G. & Guigó, R. Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun. 5, 4698 (2014).
pubmed: 25140736 doi: 10.1038/ncomms5698
Yang, Y. et al. SNP2APA: a database for evaluating effects of genetic variants on alternative polyadenylation in human cancers. Nucleic Acids Res. 48, D226–D232 (2020).
pubmed: 31511885 doi: 10.1093/nar/gkz793
Belkadi, A. et al. Identification of genetic variants controlling RNA editing and their effect on RNA structure stabilization. Eur. J. Hum. Genet. 28, 1753–1762 (2020).
pubmed: 32651550 pmcid: 7784984 doi: 10.1038/s41431-020-0688-7
Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).
pubmed: 269380 pmcid: 431482 doi: 10.1073/pnas.74.8.3171
Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).
pubmed: 902310 doi: 10.1016/0092-8674(77)90180-5
Gilbert, W. Why genes in pieces? Nature 271, 501 (1978).
pubmed: 622185 doi: 10.1038/271501a0
Gilbert, W. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52, 901–905 (1987).
pubmed: 2456887 doi: 10.1101/SQB.1987.052.01.098
Rogers, J. et al. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell 20, 303–312 (1980).
pubmed: 6771019 doi: 10.1016/0092-8674(80)90616-9
Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244 (1982).
pubmed: 6283379 doi: 10.1038/298240a0
Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).
pubmed: 18978789 doi: 10.1038/ng.259
Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).
pubmed: 18978772 pmcid: 2593745 doi: 10.1038/nature07509
Hertel, K. J. Spliceosomal Pre-mRNA Splicing: Methods and Protocols (Humana Press, 2014).
Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).
pubmed: 27677860 doi: 10.1038/nrm.2016.116
Pal, S., Gupta, R. & Davuluri, R. V. Alternative transcription and alternative splicing in cancer. Pharmacol. Ther. 136, 283–294 (2012).
pubmed: 22909788 doi: 10.1016/j.pharmthera.2012.08.005
Zhang, C., Yang, H. & Yang, H. Evolutionary character of alternative splicing in plants. Bioinform. Biol. Insights 9, 47–52 (2015).
pubmed: 26819552
Grützmann, K. et al. Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Res. 21, 27–39 (2014).
pubmed: 24122896 doi: 10.1093/dnares/dst038
Schwartz, S. H. et al. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 18, 88–103 (2008).
pubmed: 18032728 pmcid: 2134773 doi: 10.1101/gr.6818908
Gonzalez-Hilarion, S. et al. Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci. Rep. 6, 32252 (2016).
pubmed: 27577684 pmcid: 5006051 doi: 10.1038/srep32252
Kalyna, M. et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. 40, 2454–2469 (2012).
pubmed: 22127866 doi: 10.1093/nar/gkr932
Smith, C. W., Patton, J. G. & Nadal-Ginard, B. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23, 527–577 (1989).
pubmed: 2694943 doi: 10.1146/annurev.ge.23.120189.002523
Sharp, P. A. Split genes and RNA splicing (Nobel lecture). Angew. Chem. Int. Edn Engl. 33, 1229–1240 (1994).
doi: 10.1002/anie.199412291
Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).
pubmed: 23258890 doi: 10.1126/science.1230612
Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).
pubmed: 23258891 pmcid: 3568499 doi: 10.1126/science.1228186
Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3, e01201 (2014).
pubmed: 24448406 pmcid: 3896118 doi: 10.7554/eLife.01201
Gallagher, T. L. et al. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev. Biol. 359, 251–261 (2011).
pubmed: 21925157 pmcid: 3521583 doi: 10.1016/j.ydbio.2011.08.025
Terai, Y., Morikawa, N., Kawakami, K. & Okada, N. The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids. Proc. Natl Acad. Sci. USA 100, 12798–12803 (2003).
pubmed: 14569027 pmcid: 240698 doi: 10.1073/pnas.2132833100
Bolisetty, M. T., Rajadinakaran, G. & Graveley, B. R. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol. 16, 204 (2015).
pubmed: 26420219 pmcid: 4588896 doi: 10.1186/s13059-015-0777-z
Hattori, D. et al. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461, 644–648 (2009).
pubmed: 19794492 pmcid: 2836808 doi: 10.1038/nature08431
Bush, S. J., Chen, L., Tovar-Corona, J. M. & Urrutia, A. O. Alternative splicing and the evolution of phenotypic novelty. Phil. Trans. R. Soc. Lond. B 372, 20150474 (2017).
doi: 10.1098/rstb.2015.0474
Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).
pubmed: 31794245 doi: 10.1146/annurev-biochem-091719-064225
Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84, 165–198 (2015).
pubmed: 26034889 doi: 10.1146/annurev-biochem-060614-034242
Lee, Y. & Rio, D. C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291–323 (2015).
pubmed: 25784052 pmcid: 4526142 doi: 10.1146/annurev-biochem-060614-034316
Fu, X.-D. & Ares, M. Jr Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).
pubmed: 25112293 pmcid: 4440546 doi: 10.1038/nrg3778
Robberson, B. L., Cote, G. J. & Berget, S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10, 84–94 (1990).
pubmed: 2136768 pmcid: 360715
Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).
Grau-Bové, X., Ruiz-Trillo, I. & Irimia, M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol. 19, 135 (2018).
pubmed: 30223879 pmcid: 6142364 doi: 10.1186/s13059-018-1499-9
Marquez, Y., Höpfler, M., Ayatollahi, Z., Barta, A. & Kalyna, M. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Res. 25, 995–1007 (2015).
pubmed: 25934563 pmcid: 4484396 doi: 10.1101/gr.186585.114
Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950.e6 (2021).
pubmed: 33735606 pmcid: 8122139 doi: 10.1016/j.molcel.2021.02.034
Saudemont, B. et al. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol. 18, 208 (2017).
pubmed: 29084568 pmcid: 5663052 doi: 10.1186/s13059-017-1344-6
Melamud, E. & Moult, J. Structural implication of splicing stochastics. Nucleic Acids Res. 37, 4862–4872 (2009).
pubmed: 19528068 pmcid: 2724273 doi: 10.1093/nar/gkp444
Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236 (2010).
pubmed: 21151575 pmcid: 3000347 doi: 10.1371/journal.pgen.1001236
Stepankiw, N., Raghavan, M., Fogarty, E. A., Grimson, A. & Pleiss, J. A. Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res. 43, 8488–8501 (2015).
pubmed: 26261211 pmcid: 4787815 doi: 10.1093/nar/gkv763
Reixachs-Solé, M. & Eyras, E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1707 (2022).
Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).
pubmed: 22909801 doi: 10.1016/j.gene.2012.07.083
McGlincy, N. J. & Smith, C. W. J. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci. 33, 385–393 (2008).
pubmed: 18621535 doi: 10.1016/j.tibs.2008.06.001
Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).
pubmed: 28488700 pmcid: 6839889 doi: 10.1038/nrm.2017.27
Bhuiyan, S. A. et al. Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genom. 19, 637 (2018).
doi: 10.1186/s12864-018-5013-2
Stamm, S. et al. Function of alternative splicing. Gene 344, 1–20 (2005).
pubmed: 15656968 doi: 10.1016/j.gene.2004.10.022
Resch, A. et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J. Proteome Res. 3, 76–83 (2004).
pubmed: 14998166 doi: 10.1021/pr034064v
Xing, Y., Xu, Q. & Lee, C. Widespread production of novel soluble protein isoforms by alternative splicing removal of transmembrane anchoring domains. FEBS Lett. 555, 572–578 (2003).
pubmed: 14675776 doi: 10.1016/S0014-5793(03)01354-1
Goeke, S. et al. Alternative splicing of lola generates 19 transcription factors controlling axon guidance in Drosophila. Nat. Neurosci. 6, 917–924 (2003).
pubmed: 12897787 doi: 10.1038/nn1105
Martín, G., Márquez, Y., Mantica, F., Duque, P. & Irimia, M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol. 22, 35 (2021).
pubmed: 33446251 pmcid: 7807721 doi: 10.1186/s13059-020-02258-y
Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).
pubmed: 22749400 pmcid: 3437557 doi: 10.1016/j.molcel.2012.05.039
Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).
pubmed: 22749401 doi: 10.1016/j.molcel.2012.05.037
Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).
pubmed: 16717195 pmcid: 1482503 doi: 10.1073/pnas.0507916103
Lam, S. D., Babu, M. M., Lees, J. & Orengo, C. A. Biological impact of mutually exclusive exon switching. PLoS Comput. Biol. 17, e1008708 (2021).
pubmed: 33651795 pmcid: 7954323 doi: 10.1371/journal.pcbi.1008708
Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011).
pubmed: 21924763 doi: 10.1016/j.cell.2011.08.023
Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript isoforms in human cells. eLife 5, e10921 (2016).
pubmed: 26735365 pmcid: 4764583 doi: 10.7554/eLife.10921
Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).
pubmed: 27820807 pmcid: 5295628 doi: 10.1038/nsmb.3317
Mockenhaupt, S. & Makeyev, E. V. Non-coding functions of alternative pre-mRNA splicing in development. Semin. Cell Dev. Biol. 47–48, 32–39 (2015).
pubmed: 26493705 pmcid: 4683092 doi: 10.1016/j.semcdb.2015.10.018
Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl Acad. Sci. USA 100, 189–192 (2003).
pubmed: 12502788 doi: 10.1073/pnas.0136770100
Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).
pubmed: 17369403 pmcid: 1820944 doi: 10.1101/gad.1525507
Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).
pubmed: 17361132 doi: 10.1038/nature05676
da Costa, P. J., Menezes, J. & Romão, L. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int. J. Biochem. Cell Biol. 91, 168–175 (2017).
pubmed: 28743674 doi: 10.1016/j.biocel.2017.07.013
Wollerton, M. C., Gooding, C., Wagner, E. J., Garcia-Blanco, M. A. & Smith, C. W. J. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).
pubmed: 14731397 doi: 10.1016/S1097-2765(03)00502-1
Uzor, S. et al. Autoregulation of the human splice factor kinase CLK1 through exon skipping and intron retention. Gene 670, 46–54 (2018).
pubmed: 29802995 doi: 10.1016/j.gene.2018.05.095
Leclair, N. K. et al. Poison exon splicing regulates a coordinated network of SR protein expression during differentiation and tumorigenesis. Mol. Cell 80, 648–665.e9 (2020).
pubmed: 33176162 pmcid: 7680420 doi: 10.1016/j.molcel.2020.10.019
Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).
pubmed: 31911676 pmcid: 6962552 doi: 10.1038/s41588-019-0555-z
Pan, Q. et al. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev. 20, 153–158 (2006).
pubmed: 16418482 pmcid: 1356107 doi: 10.1101/gad.1382806
Rivas, M. A. et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348, 666–669 (2015).
pubmed: 25954003 pmcid: 4537935 doi: 10.1126/science.1261877
Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).
pubmed: 27618451 pmcid: 5045715 doi: 10.1038/ng.3664
García-Moreno, J. F. & Romão, L. Perspective in alternative splicing coupled to nonsense-mediated mRNA decay. Int. J. Mol. Sci. 21, 9424 (2020).
pmcid: 7764535 doi: 10.3390/ijms21249424
Zheng, Z.-Z. et al. Alternative splicing regulation of doublesex gene by RNA-binding proteins in the silkworm Bombyx mori. RNA Biol. 16, 809–820 (2019).
pubmed: 30836863 pmcid: 6546364 doi: 10.1080/15476286.2019.1590177
Lagos, D., Koukidou, M., Savakis, C. & Komitopoulou, K. The transformer gene in Bactrocera oleae: the genetic switch that determines its sex fate. Insect Mol. Biol. 16, 221–230 (2007).
pubmed: 17298554 doi: 10.1111/j.1365-2583.2006.00717.x
Shukla, J. N. & Palli, S. R. Sex determination in beetles: production of all male progeny by parental RNAi knockdown of transformer. Sci. Rep. 2, 602 (2012).
pubmed: 22924109 pmcid: 3426794 doi: 10.1038/srep00602
Salz, H. K. Sex determination in insects: a binary decision based on alternative splicing. Curr. Opin. Genet. Dev. 21, 395–400 (2011).
pubmed: 21474300 pmcid: 3134629 doi: 10.1016/j.gde.2011.03.001
Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69.e4 (2020).
pubmed: 32059760 doi: 10.1016/j.molcel.2020.01.028
Rhen, T. & Lang, J. W. Among-family variation for environmental sex determination in reptiles. Evolution 52, 1514–1520 (1998).
pubmed: 28565384
Preußner, M. et al. Body temperature cycles control rhythmic alternative splicing in mammals. Mol. Cell 67, 433–446.e4 (2017).
pubmed: 28689656 doi: 10.1016/j.molcel.2017.06.006
Posé, D. et al. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414–417 (2013).
pubmed: 24067612 doi: 10.1038/nature12633
Sureshkumar, S., Dent, C., Seleznev, A., Tasset, C. & Balasubramanian, S. Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. Nat. Plants 2, 16055 (2016).
pubmed: 27243649 doi: 10.1038/nplants.2016.55
Capovilla, G., Symeonidi, E., Wu, R. & Schmid, M. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. J. Exp. Bot. 68, 5117–5127 (2017).
pubmed: 29036339 pmcid: 5853260 doi: 10.1093/jxb/erx328
Lutz, U. et al. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis. eLife 6, e22114 (2017).
pubmed: 28294941 pmcid: 5388537 doi: 10.7554/eLife.22114
Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636 (2014).
pubmed: 24845553 doi: 10.1038/ncomms4636
Foret, S. et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl Acad. Sci. USA 109, 4968–4973 (2012).
pubmed: 22416128 pmcid: 3324026 doi: 10.1073/pnas.1202392109
Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).
pubmed: 22885060 pmcid: 3498763 doi: 10.1016/j.cub.2012.07.042
Price, J. et al. Alternative splicing associated with phenotypic plasticity in the bumble bee Bombus terrestris. Mol. Ecol. 27, 1036–1043 (2018).
pubmed: 29377451 doi: 10.1111/mec.14495
Steward, R. A., de Jong, M. A., Oostra, V. & Wheat, C. W. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat. Commun. 13, 755 (2022).
pubmed: 35136048 pmcid: 8825856 doi: 10.1038/s41467-022-28306-8
Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).
pubmed: 17304246 doi: 10.1038/nrg2063
Lemos, B., Araripe, L. O., Fontanillas, P. & Hartl, D. L. Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc. Natl Acad. Sci. USA 105, 14471–14476 (2008).
pubmed: 18791071 pmcid: 2567206 doi: 10.1073/pnas.0805160105
Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).
pubmed: 15229602 doi: 10.1038/nature02698
Kondrashov, F. A. & Koonin, E. V. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet. 19, 115–119 (2003).
pubmed: 12615001 doi: 10.1016/S0168-9525(02)00029-X
Ast, G. How did alternative splicing evolve? Nat. Rev. Genet. 5, 773–782 (2004).
pubmed: 15510168 doi: 10.1038/nrg1451
Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11, 345–355 (2010).
pubmed: 20376054 doi: 10.1038/nrg2776
Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol. 196, 671–679 (2012).
pubmed: 22431747 pmcid: 3308698 doi: 10.1083/jcb.201109041
Královičová, J. et al. Restriction of an intron size en route to endothermy. Nucleic Acids Res. 49, 2460–2487 (2021).
pubmed: 33550394 pmcid: 7969005 doi: 10.1093/nar/gkab046
Waites, G. T. et al. Mutually exclusive splicing of calcium-binding domain exons in chick alpha-actinin. J. Biol. Chem. 267, 6263–6271 (1992).
pubmed: 1556133 doi: 10.1016/S0021-9258(18)42690-7
Hatje, K. et al. The landscape of human mutually exclusive splicing. Mol. Syst. Biol. 13, 959 (2017).
pubmed: 29242366 pmcid: 5740500 doi: 10.15252/msb.20177728
Graveley, B. R. et al. The organization and evolution of the dipteran and hymenopteran Down syndrome cell adhesion molecule (Dscam) genes. RNA 10, 1499–1506 (2004).
pubmed: 15383675 pmcid: 1370636 doi: 10.1261/rna.7105504
Baeza-Centurion, P., Miñana, B., Schmiedel, J. M., Valcárcel, J. & Lehner, B. Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell 176, 549–563.e23 (2019).
pubmed: 30661752 doi: 10.1016/j.cell.2018.12.010
Glidden, D. T., Buerer, J. L., Saueressig, C. F. & Fairbrother, W. G. Hotspot exons are common targets of splicing perturbations. Nat. Commun. 12, 2756 (2021).
pubmed: 33980843 pmcid: 8115636 doi: 10.1038/s41467-021-22780-2
Krawczak, M. et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28, 150–158 (2007).
pubmed: 17001642 doi: 10.1002/humu.20400
Wang, G.-S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761 (2007).
pubmed: 17726481 doi: 10.1038/nrg2164
Schmitz, J. & Brosius, J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93, 1928–1934 (2011).
pubmed: 21787833 doi: 10.1016/j.biochi.2011.07.014
Attig, J. et al. Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174, 1067–1081.e17 (2018).
pubmed: 30078707 pmcid: 6108849 doi: 10.1016/j.cell.2018.07.001
Sorek, R. et al. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol. Cell 14, 221–231 (2004).
pubmed: 15099521 doi: 10.1016/S1097-2765(04)00181-9
Attig, J. et al. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. eLife 5, e19545 (2016).
pubmed: 27861119 pmcid: 5115870 doi: 10.7554/eLife.19545
Shen, S. et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc. Natl Acad. Sci. USA 108, 2837–2842 (2011).
pubmed: 21282640 pmcid: 3041063 doi: 10.1073/pnas.1012834108
Lin, L. et al. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 4, e1000225 (2008).
pubmed: 18841251 pmcid: 2562518 doi: 10.1371/journal.pgen.1000225
Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002).
pubmed: 12097342 pmcid: 186627 doi: 10.1101/gr.229302
Alekseyenko, A. V., Kim, N. & Lee, C. J. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13, 661–670 (2007).
pubmed: 17369312 pmcid: 1852814 doi: 10.1261/rna.325107
Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177–180 (2003).
pubmed: 12730695 doi: 10.1038/ng1159
Martinez-Gomez, L. et al. Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation. Nar. Genom. Bioinform 2, lqz023 (2020).
pubmed: 31886458 doi: 10.1093/nargab/lqz023
Lin, L. et al. The contribution of Alu exons to the human proteome. Genome Biol. 17, 15 (2016).
pubmed: 26821878 pmcid: 4731929 doi: 10.1186/s13059-016-0876-5
Merkin, J. J., Chen, P., Alexis, M. S., Hautaniemi, S. K. & Burge, C. B. Origins and impacts of new mammalian exons. Cell Rep. 10, 1992–2005 (2015).
pubmed: 25801031 pmcid: 4715653 doi: 10.1016/j.celrep.2015.02.058
Fiszbein, A., Krick, K. S., Begg, B. E. & Burge, C. B. Exon-mediated activation of transcription starts. Cell 179, 1551–1565.e17 (2019).
pubmed: 31787377 pmcid: 7351029 doi: 10.1016/j.cell.2019.11.002
Wong, E. S. et al. Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nat. Commun. 8, 1092 (2017).
pubmed: 29061983 pmcid: 5653656 doi: 10.1038/s41467-017-01037-x
Smith, C. C. R. et al. Genetics of alternative splicing evolution during sunflower domestication. Proc. Natl Acad. Sci. USA 115, 6768–6773 (2018).
pubmed: 29891718 pmcid: 6042098 doi: 10.1073/pnas.1803361115
Gueroussov, S. et al. An alternative splicing event amplifies evolutionary differences between vertebrates. Science 349, 868–873 (2015).
pubmed: 26293963 doi: 10.1126/science.aaa8381
Liang, Y. et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia 32, 2659–2671 (2018).
pubmed: 29858584 pmcid: 6274620 doi: 10.1038/s41375-018-0152-7
Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).
pubmed: 23374342 pmcid: 3629564 doi: 10.1016/j.cell.2012.12.023
Torres-Méndez, A. et al. A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat. Ecol. Evol. 3, 691–701 (2019).
pubmed: 30833759 doi: 10.1038/s41559-019-0813-6
Thatcher, S. R. et al. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell 26, 3472–3487 (2014).
pubmed: 25248552 pmcid: 4213170 doi: 10.1105/tpc.114.130773
Jelen, N., Ule, J., Zivin, M. & Darnell, R. B. Evolution of Nova-dependent splicing regulation in the brain. PLoS Genet. 3, 1838–1847 (2007).
pubmed: 17937501 doi: 10.1371/journal.pgen.0030173
Li, Y. et al. Global genetic robustness of the alternative splicing machinery in Caenorhabditis elegans. Genetics 186, 405–410 (2010).
pubmed: 20610403 pmcid: 2940304 doi: 10.1534/genetics.110.119677
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).
doi: 10.1038/nature03001
C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).
doi: 10.1126/science.282.5396.2012
Hahn, M. W. & Wray, G. A. The G-value paradox. Evol. Dev. 4, 73–75 (2002).
pubmed: 12004964 doi: 10.1046/j.1525-142X.2002.01069.x
Taft, R. J. & Mattick, J. S. Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biol. 5, P1 (2003).
doi: 10.1186/gb-2003-5-1-p1
Peterson, K. J., Dietrich, M. R. & McPeek, M. A. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009).
pubmed: 19472371 doi: 10.1002/bies.200900033
Chen, L., Bush, S. J., Tovar-Corona, J. M., Castillo-Morales, A. & Urrutia, A. O. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Mol. Biol. Evol. 31, 1402–1413 (2014).
pubmed: 24682283 pmcid: 4032128 doi: 10.1093/molbev/msu083
Harr, B. & Turner, L. M. Genome-wide analysis of alternative splicing evolution among Mus subspecies. Mol. Ecol. 19, 228–239 (2010).
pubmed: 20331782 doi: 10.1111/j.1365-294X.2009.04490.x
Tovar-Corona, J. M. et al. Alternative splice in alternative lice. Mol. Biol. Evol. 32, 2749–2759 (2015).
pubmed: 26169943 pmcid: 4576711 doi: 10.1093/molbev/msv151
Olds, B. P. et al. Comparison of the transcriptional profiles of head and body lice. Insect Mol. Biol. 21, 257–268 (2012).
pubmed: 22404397 doi: 10.1111/j.1365-2583.2012.01132.x
Drali, R., Boutellis, A., Raoult, D., Rolain, J. M. & Brouqui, P. Distinguishing body lice from head lice by multiplex real-time PCR analysis of the Phum_PHUM540560 gene. PLoS ONE 8, e58088 (2013).
pubmed: 23469145 pmcid: 3585238 doi: 10.1371/journal.pone.0058088
Fujikura, U. et al. Variation in splicing efficiency underlies morphological evolution in Capsella. Dev. Cell 44, 192–203.e5 (2018).
pubmed: 29275992 doi: 10.1016/j.devcel.2017.11.022
Jarosch, A., Stolle, E., Crewe, R. M. & Moritz, R. F. A. Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera). Proc. Natl Acad. Sci. USA 108, 15282–15287 (2011).
pubmed: 21896748 pmcid: 3174643 doi: 10.1073/pnas.1109343108
Jarosch-Perlow, A., Yusuf, A. A., Pirk, C. W. W., Crewe, R. M. & Moritz, R. F. A. Control of mandibular gland pheromone synthesis by alternative splicing of the CP-2 transcription factor gemini in honeybees (Apis mellifera carnica). Apidologie 49, 450–458 (2018).
doi: 10.1007/s13592-018-0571-5
Winston, M. L. & Slessor, K. N. Honey bee primer pheromones and colony organization: gaps in our knowledge. Apidologie 29, 81–95 (1998).
doi: 10.1051/apido:19980105
Sakagami, S. F. The false-queen: fourth adjustive response in dequeened honeybee colonies. Behaviour 13, 280–295 (1958).
Marchinko, K. B. Predation’s role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution 63, 127–138 (2009).
pubmed: 18803682 doi: 10.1111/j.1558-5646.2008.00529.x
Howes, T. R., Summers, B. R. & Kingsley, D. M. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A. BMC Biol. 15, 115 (2017).
pubmed: 29212540 pmcid: 5719529 doi: 10.1186/s12915-017-0456-5
Xiong, S. et al. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Curr. Biol. https://doi.org/10.1016/j.cub.2022.03.038 (2022).
Ceinos, R. M. et al. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2. Sci. Rep. 8, 8754 (2018).
pubmed: 29884790 pmcid: 5993827 doi: 10.1038/s41598-018-27080-2
Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010).
pubmed: 20009012 pmcid: 2813474 doi: 10.1101/gr.099226.109
Brown, J. B. et al. Diversity and dynamics of the Drosophila transcriptome. Nature 512, 393–399 (2014).
pubmed: 24670639 pmcid: 4152413 doi: 10.1038/nature12962
Gibilisco, L., Zhou, Q., Mahajan, S. & Bachtrog, D. Alternative splicing within and between Drosophila species, sexes, tissues, and developmental stages. PLoS Genet. 12, e1006464 (2016).
pubmed: 27935948 pmcid: 5147784 doi: 10.1371/journal.pgen.1006464
Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).
pubmed: 21179090 doi: 10.1038/nature09715
Rogers, T. F., Palmer, D. H. & Wright, A. E. Sex-specific selection drives the evolution of alternative splicing in birds. Mol. Biol. Evol. 38, 519–530 (2021).
pubmed: 32977339 doi: 10.1093/molbev/msaa242
Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).
pubmed: 27126046 pmcid: 5182069 doi: 10.1126/science.aad9417
Gao, Q., Sun, W., Ballegeer, M., Libert, C. & Chen, W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol. 11, 816 (2015).
pubmed: 26134616 pmcid: 4547845 doi: 10.15252/msb.20145970
Wang, X. et al. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant. J. 97, 555–570 (2019).
pubmed: 30375060
Singh, P., Börger, C., More, H. & Sturmbauer, C. The role of alternative splicing and differential gene expression in cichlid adaptive radiation. Genome Biol. Evol. 9, 2764–2781 (2017).
pubmed: 29036566 pmcid: 5737861 doi: 10.1093/gbe/evx204
Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol. 222, jeb193516 (2019).
pubmed: 30692167 doi: 10.1242/jeb.193516
Jacobs, A. & Elmer, K. R. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol. Ecol. https://doi.org/10.1111/mec.15817 (2021).
Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).
pubmed: 16839875 doi: 10.1016/j.cell.2006.06.023
Papakostas, S. et al. Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nat. Commun. 5, 4071 (2014).
pubmed: 24892934 doi: 10.1038/ncomms5071
Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).
pubmed: 22012392 doi: 10.1038/nature10532
Battle, A. et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24 (2014).
pubmed: 24092820 pmcid: 3875855 doi: 10.1101/gr.155192.113
Reyes, A. et al. Drift and conservation of differential exon usage across tissues in primate species. Proc. Natl Acad. Sci. USA 110, 15377–15382 (2013).
pubmed: 24003148 pmcid: 3780897 doi: 10.1073/pnas.1307202110
Gracheva, E. O. et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476, 88–91 (2011).
pubmed: 21814281 pmcid: 3535012 doi: 10.1038/nature10245
Kürten, L. & Schmidt, U. Thermoperception in the common vampire bat (Desmodus rotundus). J. Comp. Physiol. A 146, 223–228 (1982).
doi: 10.1007/BF00610241
Verta, J.-P. & Jacobs, A. The role of alternative splicing in adaptation and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.11.010 (2021).
Gehring, N. H. & Roignant, J.-Y. Anything but ordinary — emerging splicing mechanisms in eukaryotic gene regulation. Trends Genet. 37, 355–372 (2021).
pubmed: 33203572 doi: 10.1016/j.tig.2020.10.008
Xia, B. et al. The genetic basis of tail-loss evolution in humans and apes. Preprint at bioRxiv https://doi.org/10.1101/2021.09.14.460388 (2021).
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
pubmed: 33911273 pmcid: 8081667 doi: 10.1038/s41586-021-03451-0
Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
pubmed: 29686065 pmcid: 5924910 doi: 10.1073/pnas.1720115115
Arzalluz-Luque, Á. & Conesa, A. Single-cell RNAseq for the study of isoforms — how is that possible? Genome Biol. 19, 110 (2018).
pubmed: 30097058 pmcid: 6085759 doi: 10.1186/s13059-018-1496-z
Buen Abad Najar, C. F., Yosef, N. & Lareau, L. F. Coverage-dependent bias creates the appearance of binary splicing in single cells. eLife 9, e54603 (2020).
pubmed: 32597758 pmcid: 7498265 doi: 10.7554/eLife.54603
Buen Abad Najar, C., Burra, P., Yosef, N. & Lareau, L. F. Identifying cell-state associated alternative splicing events and their co-regulation. Preprint at bioRxiv https://doi.org/10.1101/2021.07.23.453605 (2021).
Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).
pubmed: 17021158 doi: 10.1093/bioinformatics/btl505
Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
pubmed: 15173120 pmcid: 419797 doi: 10.1101/gr.849004
Cline, T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics 90, 683–698 (1978).
pubmed: 105964 pmcid: 1213913 doi: 10.1093/genetics/90.4.683
Inoue, K., Hoshijima, K., Sakamoto, H. & Shimura, Y. Binding of the Drosophila sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 344, 461–463 (1990).
pubmed: 1690860 doi: 10.1038/344461a0
Belote, J. M., McKeown, M., Boggs, R. T., Ohkawa, R. & Sosnowski, B. A. Molecular genetics of transformer, a genetic switch controlling sexual differentiation in Drosophila. Dev. Genet. 10, 143–154 (1989).
pubmed: 2472240 doi: 10.1002/dvg.1020100304
Boggs, R. T., Gregor, P., Idriss, S., Belote, J. M. & McKeown, M. Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50, 739–747 (1987).
pubmed: 2441872 doi: 10.1016/0092-8674(87)90332-1
Hoshijima, K., Inoue, K., Higuchi, I., Sakamoto, H. & Shimura, Y. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252, 833–836 (1991).
pubmed: 1902987 doi: 10.1126/science.1902987
Bashaw, G. J. & Baker, B. S. The regulation of the Drosophila msl-2 gene reveals a function for sex-lethal in translational control. Cell 89, 789–798 (1997).
pubmed: 9182767 doi: 10.1016/S0092-8674(00)80262-7
Kim, E., Goren, A. & Ast, G. Alternative splicing: current perspectives. Bioessays 30, 38–47 (2008).
pubmed: 18081010 doi: 10.1002/bies.20692
Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).
pubmed: 18369186 pmcid: 2327353 doi: 10.1261/rna.876308
Pandit, S. et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell 50, 223–235 (2013).
pubmed: 23562324 pmcid: 3640356 doi: 10.1016/j.molcel.2013.03.001
Buckanovich, R. J., Yang, Y. Y. & Darnell, R. B. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J. Neurosci. 16, 1114–1122 (1996).
pubmed: 8558240 pmcid: 6578795 doi: 10.1523/JNEUROSCI.16-03-01114.1996
Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).
pubmed: 10719891 doi: 10.1016/S0896-6273(00)80900-9
Yang, Y. Y., Yin, G. L. & Darnell, R. B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl Acad. Sci. USA 95, 13254–13259 (1998).
pubmed: 9789075 pmcid: 23773 doi: 10.1073/pnas.95.22.13254
Buckanovich, R. J. & Darnell, R. B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201 (1997).
pubmed: 9154818 pmcid: 232172 doi: 10.1128/MCB.17.6.3194
Jensen, K. B., Musunuru, K., Lewis, H. A., Burley, S. K. & Darnell, R. B. The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl Acad. Sci. USA 97, 5740–5745 (2000).
pubmed: 10811881 pmcid: 18503 doi: 10.1073/pnas.090553997
Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).
pubmed: 19959365 doi: 10.1016/j.tibs.2009.10.004
Graveley, B. R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65–73 (2005).
pubmed: 16213213 pmcid: 2366815 doi: 10.1016/j.cell.2005.07.028
Dominissini, D. et al. Topology of the human and mouse m
pubmed: 22575960 doi: 10.1038/nature11112
Lewis, C. J. T., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 18, 202–210 (2017).
pubmed: 28144031 pmcid: 5542016 doi: 10.1038/nrm.2016.163
Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).
pubmed: 18599741 doi: 10.1126/science.1160342
Tress, M. L., Abascal, F. & Valencia, A. Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci. 42, 98–110 (2017).
pubmed: 27712956 doi: 10.1016/j.tibs.2016.08.008
Blencowe, B. J. The relationship between alternative splicing and proteomic complexity. Trends Biochem. Sci. 42, 407–408 (2017).
pubmed: 28483376 doi: 10.1016/j.tibs.2017.04.001
Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).
pubmed: 31626751 doi: 10.1016/j.molcel.2019.09.017
Reixachs-Solé, M., Ruiz-Orera, J., Albà, M. M. & Eyras, E. Ribosome profiling at isoform level reveals evolutionary conserved impacts of differential splicing on the proteome. Nat. Commun. 11, 1768 (2020).
pubmed: 32286305 pmcid: 7156646 doi: 10.1038/s41467-020-15634-w
Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240–251 (2013).
pubmed: 23810193 pmcid: 3756563 doi: 10.1016/j.cell.2013.06.009
Melamud, E. & Moult, J. Stochastic noise in splicing machinery. Nucleic Acids Res. 37, 4873–4886 (2009).
pubmed: 19546110 pmcid: 2724286 doi: 10.1093/nar/gkp471
Xu, C. & Zhang, J. Alternative polyadenylation of mammalian transcripts is generally deleterious, not. adaptive. Cell Syst. 6, 734–742.e4 (2018).
pubmed: 29886108 pmcid: 6420822 doi: 10.1016/j.cels.2018.05.007
Xu, G. & Zhang, J. Human coding RNA editing is generally nonadaptive. Proc. Natl Acad. Sci. USA 111, 3769–3774 (2014).
pubmed: 24567376 pmcid: 3956144 doi: 10.1073/pnas.1321745111
Xu, C., Park, J.-K. & Zhang, J. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 17, e3000197 (2019).
pubmed: 30883542 pmcid: 6438578 doi: 10.1371/journal.pbio.3000197
Rodriguez, J. M., Pozo, F., di Domenico, T., Vazquez, J. & Tress, M. L. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol. 16, e1008287 (2020).
pubmed: 33017396 pmcid: 7561204 doi: 10.1371/journal.pcbi.1008287
Neverov, A. D. et al. Alternative splicing and protein function. BMC Bioinform. 6, 266 (2005).
doi: 10.1186/1471-2105-6-266
Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).
pubmed: 26871637 pmcid: 4882190 doi: 10.1016/j.cell.2016.01.029
Pozo, F. et al. Assessing the functional relevance of splice isoforms. NAR Genom. Bioinform 3, lqab044 (2021).
pubmed: 34046593 pmcid: 8140736 doi: 10.1093/nargab/lqab044
Yuan, J. et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol. Cell 72, 380–394.e7 (2018).
pubmed: 30293782 doi: 10.1016/j.molcel.2018.09.002
Charton, K. et al. Exploiting the CRISPR/Cas9 system to study alternative splicing in vivo: application to titin. Hum. Mol. Genet. 25, 4518–4532 (2016).
pubmed: 28173117
Marti-Solano, M. et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 587, 650–656 (2020).
pubmed: 33149304 pmcid: 7611127 doi: 10.1038/s41586-020-2888-2

Auteurs

Charlotte J Wright (CJ)

Tree of Life, Wellcome Sanger Institute, Cambridge, UK. cw22@sanger.ac.uk.
Department of Zoology, University of Cambridge, Cambridge, UK. cw22@sanger.ac.uk.

Christopher W J Smith (CWJ)

Department of Biochemistry, University of Cambridge, Cambridge, UK. cwjs1@cam.ac.uk.

Chris D Jiggins (CD)

Department of Zoology, University of Cambridge, Cambridge, UK. c.jiggins@zoo.cam.ac.uk.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility
Biological Evolution History, 20th Century Selection, Genetic History, 19th Century Biology
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

Classifications MeSH