Neurocognitive and neurobehavioral characterization of two frequent forms of neurodevelopmental disorders: the DYRK1A and the Wiedemann-Steiner syndromes.
Abnormalities, Multiple
Autism Spectrum Disorder
/ complications
Craniofacial Abnormalities
Growth Disorders
Histone-Lysine N-Methyltransferase
/ genetics
Humans
Hypertrichosis
Intellectual Disability
Myeloid-Lymphoid Leukemia Protein
/ genetics
Neurodevelopmental Disorders
/ diagnosis
Phenotype
Retrospective Studies
Syndrome
ADHD
DYRK1A
KMT2A
Wiedemann-Steiner syndrome
anxiety
autism spectrum disorder
behavioral phenotype
communication
Journal
Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
09
07
2022
received:
22
03
2022
accepted:
11
07
2022
pubmed:
14
7
2022
medline:
9
9
2022
entrez:
13
7
2022
Statut:
ppublish
Résumé
DYRK1A and Wiedemann-Steiner syndromes (WSS) are two genetic conditions associated with neurodevelopmental disorders (NDDs). Although their clinical phenotype has been described, their behavioral phenotype has not systematically been studied using standardized assessment tools. To characterize the latter, we conducted a retrospective study, collecting data on developmental history, autism spectrum disorder (ASD), adaptive functioning, behavioral assessments, and sensory processing of individuals with these syndromes (n = 14;21). In addition, we analyzed information collected from families (n = 20;20) using the GenIDA database, an international patient-driven data collection aiming to better characterize natural history of genetic forms of NDDs. In the retrospective study, individuals with DYRK1A syndrome showed lower adaptive behavior scores compared to those with WSS, whose scores showed greater heterogeneity. An ASD diagnosis was established for 57% (8/14) of individuals with DYRK1A syndrome and 24% (5/21) of those with WSS. Language and communication were severely impaired in individuals with DYRK1A syndrome, which was also evident from GenIDA data, whereas in WSS patients, exploration of behavioral phenotypes revealed the importance of anxiety symptomatology and ADHD signs, also flagged in GenIDA. This study, describing the behavioral and sensorial profiles of individuals with WSS and DYRK1A syndrome, highlighted some specificities important to be considered for patients' management.
Substances chimiques
Myeloid-Lymphoid Leukemia Protein
149025-06-9
Histone-Lysine N-Methyltransferase
EC 2.1.1.43
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
296-304Informations de copyright
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Bronicki LM, Redin C, Drunat S, et al. Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. Eur J Hum Genet. 2015;23(11):1482-1487. doi:10.1038/ejhg.2015.29
Blackburn ATM, Bekheirnia N, Uma VC, et al. DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genet Med. 2019;21(12):2755-2764. doi:10.1038/s41436-019-0576-0
van Bon B, Hoischen A, Hehir-Kwa J, et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin Genet. 2011;79(3):296-299. doi:10.1111/j.1399-0004.2010.01544.x
van Bon BWM, Coe BP, Bernier R, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry. 2016;21(1):126-132. doi:10.1038/mp.2015.5
Courcet JB, Faivre L, Malzac P, et al. The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy. J Med Genet. 2012;49(12):731-736. doi:10.1136/jmedgenet-2012-101251
Ruaud L, Mignot C, Guët A, et al. DYRK1A mutations in two unrelated patients. Eur J Med Genet. 2015;58(3):168-174. doi:10.1016/j.ejmg.2014.12.014
Ji J, Lee H, Argiropoulos B, et al. DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. Eur J Hum Genet. 2015;23(11):1473-1481. doi:10.1038/ejhg.2015.71
Luco SM, Pohl D, Sell E, Wagner JD, Dyment DA, Daoud H. Case report of novel DYRK1A mutations in 2 individuals with syndromic intellectual disability and a review of the literature. BMC Med Genet. 2016;17:15. doi:10.1186/s12881-016-0276-4
Courraud J, Chater-Diehl E, Durand B, et al. Integrative approach to interpret DYRK1A variants, leading to a frequent neurodevelopmental disorder. Genet Med. 2021;3:2150-2159. doi:10.1038/s41436-021-01263-1
Miyake N, Tsurusaki Y, Koshimizu E, et al. Delineation of clinical features in Wiedemann-Steiner syndrome caused by KMT2A mutations. Clin Genet. 2016;89(1):115-119. doi:10.1111/cge.12586
Baer S, Afenjar A, Smol T, et al. Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: a study of 33 French cases. Clin Genet. 2018;94(1):141-152. doi:10.1111/cge.13254
Li N, Wang Y, Yang Y, et al. Description of the molecular and phenotypic spectrum of Wiedemann-Steiner syndrome in Chinese patients. Orphanet J Rare Dis. 2018;13(1):178. doi:10.1186/s13023-018-0909-0
Giangiobbe S, Caraffi SG, Ivanovski I, et al. Expanding the phenotype of Wiedemann-Steiner syndrome: Craniovertebral junction anomalies. Am J Med Genet A. 2020;182(12):2877-2886. doi:10.1002/ajmg.a.61859
Sheppard SE, Campbell IM, Harr MH, et al. Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner syndrome. Am J Med Genet A. 2021;185(6):1649-1665. doi:10.1002/ajmg.a.62124
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433-438. doi:10.1038/nature21062
Martínez F, Caro-Llopis A, Roselló M, et al. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing. J Med Genet. 2017;54(2):87-92. doi:10.1136/jmedgenet-2016-103964
Earl RK, Turner TN, Mefford HC, et al. Clinical phenotype of ASD-associated DYRK1A haploinsufficiency. Mol Autism. 2017;8:54. doi:10.1186/s13229-017-0173-5
Chan AJS, Cytrynbaum C, Hoang N, et al. Expanding the neurodevelopmental phenotypes of individuals with de novo KMT2A variants. NPJ Genom Med. 2019;4(1):1-10. doi:10.1038/s41525-019-0083-x
O'Roak BJ, Vives L, Fu W, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619-1622. doi:10.1126/science.1227764
O'Roak BJ, Stessman HA, Boyle EA, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595. doi:10.1038/ncomms6595
Iossifov I, Ronemus M, Levy D, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285-299. doi:10.1016/j.neuron.2012.04.009
Iossifov I, O'Roak BJ, Sanders SJ, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216-221. doi:10.1038/nature13908
De Rubeis S, He X, Goldberg AP, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209-215. doi:10.1038/nature13772
Sanders SJ, Murtha MT, Gupta AR, et al. De novo mutations revealed by whole exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237-241. doi:10.1038/nature10945
Yuen C, Merico D, Bookman M, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602-611. doi:10.1038/nn.4524
Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659-685. doi:10.1007/bf02172145
Rogé B, Fombonne E, Kruck J, Arti E. ADI-R: Entretien Semi-Structuré Pour Le Diagnostic de l'autisme. Hogrefe; 2011.
Rutter M, Bailey A, Lord C. Social Communication Questionnaire (SCQ). Western Psychological Services; 2003.
Jeanne K, Rogé B, Lacot E, Jeanne KRUCK. Adaptation de l'outil SCQ (Social Communication Questionnaire), en langue française: validation sur une population d'enfants de plus de 4 ans. ANAE: Approche Neuropsychologique des Apprentissages chez l'enfant. 2015;27:495-498.
Sparrow S, Cicchetti D, Balla D. Vineland Adaptive Behavior Scales, Second Edition (Vineland™-II). Pearson; 2005.
Sonié S, Touil N, Riche B, et al. Development of the French Norms for the Vineland Adaptive Behavior Scales VABS-II; 2019
Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;89(5):485-491.
Salehi P, Herzig L, Capone G, Lu A, Oron AP, Kim SJ. Comparison of aberrant behavior checklist profiles across Prader-Willi syndrome, down syndrome, and autism spectrum disorder. Am J Med Genet A. 2018;176(12):2751-2759. doi:10.1002/ajmg.a.40665
Birmaher B, Khetarpal S, Brent D, et al. The screen for child anxiety related emotional disorders (SCARED): scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry. 1997;36(4):545-553. doi:10.1097/00004583-199704000-00018
Bouvard M, Roulin JL, Denis A. The French version of the Screen for Child Anxiety Related Emotional Disorders-Revised (SCARED-R): factor structure, convergent and divergent validity in a sample of teenagers. Psychologica Belgica. 2013;53(2):3-14. doi:10.5334/pb-53-2-3
Conners C, Erhardt D, Sparrow M. Conners' Rating Scales-Revised: long form. Multi-Heath Systems; 1997.
Dunn W. Sensory profile: User's manual. Psychol Corp. 1999.
The Jamovi Project. Jamovi (Version 1.6) [Computer Software]; 2021. https://www.jamovi.org
Walker M. Makaton system of communication. Spec Educ Forward Trends. 1977;4(3):11.
Bondy AS, Frost LA. The picture exchange communication system. Semin Speech Lang. 1998;19(4):373-388. doi:10.1055/s-2008-1064055
Engel-Yeger B, Hardal-Nasser R, Gal E. Sensory processing dysfunctions as expressed among children with different severities of intellectual developmental disabilities. Res Dev Disabil. 2011;32(5):1770-1775. doi:10.1016/j.ridd.2011.03.005
Di Fede E, Massa V, Augello B, et al. Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann-Steiner and Rubinstein-Taybi syndromes. Eur J Hum Genet. 2021;29(1):88-98. doi:10.1038/s41431-020-0679-8
Robles-Bello MA, Sánchez-Teruel D, Valencia NN. Adaptation of the screen for child anxiety related emotional disorders in Spanish with nonspecific intellectual disability. Child Psychiatry Hum Dev. 2020;51(5):742-753. doi:10.1007/s10578-020-00996-5
Lord C, Risi S, Lambrecht L, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the Spectrum of autism. J Autism Dev Disord. 2000;30(3):205-223. doi:10.1023/A:1005592401947