Improved detection limits of J-coupled neurometabolites in the human brain at 7 T with a J-refocused sLASER sequence.


Journal

NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233

Informations de publication

Date de publication:
12 2022
Historique:
revised: 02 07 2022
received: 27 10 2021
accepted: 12 07 2022
pubmed: 15 7 2022
medline: 16 11 2022
entrez: 14 7 2022
Statut: ppublish

Résumé

In a standard spin echo, the time evolution due to homonuclear couplings is not reversed, leading to echo time (TE)-dependent modulation of the signal amplitude and signal loss in the case of overlapping multiplet resonances. This has an adverse effect on quantification of several important metabolites such as glutamate and glutamine. Here, we propose a J-refocused variant of the sLASER sequence (J-sLASER) to improve quantification of J-coupled metabolites at ultrahigh field (UHF). The use of the sLASER sequence is particularly advantageous at UHF as it minimizes chemical shift displacement error and results in relatively homogenous refocusing. We simulated the MRS signal from brain metabolites over a broad range of TE values with sLASER and J-sLASER, and showed that the signal of J-coupled metabolites was increased with J-sLASER with TE values up to ~80 ms. We further simulated "brain-like" spectra with both sequences at the shortest TE available on our scanner. We showed that, despite the slightly longer TE, the J-sLASER sequence results in significantly lower Cramer-Rao lower bounds (CRLBs) for J-coupled metabolites compared with those obtained with sLASER. Following phantom validation, we acquired spectra from two brain regions in 10 healthy volunteers (age 38 ± 15 years) using both sequences. We showed that using J-sLASER results in a decrease of CRLBs for J-coupled metabolites. In particular, we measured a robust ~38% decrease in the mean CRLB (glutamine) in parietal white matter and posterior cingulate cortex (PCC). We further showed, in 10 additional healthy volunteers (age 34 ± 15 years), that metabolite quantification following two separate acquisitions with J-sLASER in the PCC was repeatable. The improvement in quantification of glutamine may in turn improve the independent quantification of glutamate, the main excitatory neurotransmitter in the brain, and will simultaneously help to track possible modulations of glutamine, which is a key player in the glutamatergic cycle in astrocytes.

Identifiants

pubmed: 35833462
doi: 10.1002/nbm.4801
pmc: PMC9788253
doi:

Substances chimiques

Glutamine 0RH81L854J
Glutamic Acid 3KX376GY7L

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4801

Informations de copyright

© 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

Références

J Magn Reson. 2005 Jul;175(1):30-43
pubmed: 15949746
NMR Biomed. 2020 Jan 10;:e4236
pubmed: 31922301
J Magn Reson Imaging. 2017 Jan;45(1):187-198
pubmed: 27351712
NMR Biomed. 2013 Sep;26(9):1113-24
pubmed: 23440698
NMR Biomed. 2012 Feb;25(2):332-9
pubmed: 21796710
IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
pubmed: 11293691
Magn Reson Med. 1996 Jul;36(1):7-12
pubmed: 8795013
J Magn Reson. 2018 Jan;286:18-29
pubmed: 29172170
Magn Reson Med. 2006 Feb;55(2):250-7
pubmed: 16402370
Neuro Oncol. 2018 Jun 18;20(7):907-916
pubmed: 29126125
Magn Reson Med. 2002 May;47(5):1009-12
pubmed: 11979581
Neuroimage. 2020 Dec;223:117338
pubmed: 32896636
Magn Reson Chem. 2019 Jan;57(1):13-29
pubmed: 29927497
NMR Biomed. 2000 May;13(3):129-53
pubmed: 10861994
Magn Reson Med. 2015 Jan;73(1):31-43
pubmed: 24664399
J Alzheimers Dis. 2019;68(2):559-569
pubmed: 30775983
Neuroimage. 2014 Jun;93 Pt 1:138-45
pubmed: 24555953
J Cereb Blood Flow Metab. 2012 Aug;32(8):1484-95
pubmed: 22434070
J Magn Reson Imaging. 2013 Aug;38(2):460-7
pubmed: 23292856
Magn Reson Med. 2018 May;79(5):2481-2490
pubmed: 28972290
J Cereb Blood Flow Metab. 2015 Mar 31;35(4):601-10
pubmed: 25564236
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
Chem Commun (Camb). 2013 Jan 14;49(4):358-60
pubmed: 23192194
Magn Reson Med. 1992 May;25(1):94-106
pubmed: 1350656
Magn Reson Med. 1996 Nov;36(5):775-80
pubmed: 8916029
Magn Reson Med. 2015 Jan;73(1):44-50
pubmed: 24436292
Magn Reson Med. 1999 Apr;41(4):649-56
pubmed: 10332839
Magn Reson Med. 2019 Apr;81(4):2209-2222
pubmed: 30390346
J Neurosci. 1993 Mar;13(3):981-9
pubmed: 8441018
J Magn Reson. 2001 Dec;153(2):155-77
pubmed: 11740891
NMR Biomed. 2013 Oct;26(10):1242-50
pubmed: 23592268
Magn Reson Med. 2014 Jul;72(1):20-5
pubmed: 23900976
Magn Reson Med. 1991 Sep;21(1):82-96
pubmed: 1682784
NMR Biomed. 2022 Dec;35(12):e4801
pubmed: 35833462
Magn Reson Med. 1993 Dec;30(6):672-9
pubmed: 8139448
NMR Biomed. 2010 Apr;23(3):227-32
pubmed: 19655342
NMR Biomed. 2015 Apr;28(4):514-22
pubmed: 25802216
J Neurochem. 2009 May;109 Suppl 1:55-62
pubmed: 19393009
Neuroimage. 2018 Mar;168:181-198
pubmed: 28712992
NMR Biomed. 2010 Feb;23(2):142-51
pubmed: 19904727
NMR Biomed. 2013 Oct;26(10):1213-9
pubmed: 23508792
Magn Reson Med. 2010 Nov;64(5):1237-46
pubmed: 20648684
Radiology. 2014 Mar;270(3):658-79
pubmed: 24568703
Magn Reson Med. 2021 Dec;86(6):2957-2965
pubmed: 34309065
J Magn Reson Imaging. 2016 Jan;43(1):88-98
pubmed: 26059603
J Magn Reson Imaging. 2021 Mar;53(3):859-873
pubmed: 32297700
NMR Biomed. 2016 May;29(5):600-6
pubmed: 26900755
Magn Reson Med. 2012 Oct;68(4):1018-25
pubmed: 22213204
NMR Biomed. 2010 Nov;23(9):1044-52
pubmed: 20963800
Magn Reson Med. 2015 Feb;73(2):451-8
pubmed: 24585452
NMR Biomed. 2011 Nov;24(9):1038-46
pubmed: 21294206
Magn Reson Med. 2019 Aug;82(2):527-550
pubmed: 30919510
Magn Reson Med. 2015 Jan;73(1):13-20
pubmed: 24436256
Magn Reson Med. 2009 Oct;62(4):868-79
pubmed: 19591201
Neuroimage. 2017 Jul 15;155:113-119
pubmed: 28433623
Magn Reson Med. 2020 Jun;83(6):1895-1908
pubmed: 31729080
J Cereb Blood Flow Metab. 2007 May;27(5):1055-63
pubmed: 17033694
Magn Reson Med. 2017 Jan;77(1):23-33
pubmed: 26715192
Magn Reson Med. 1995 Aug;34(2):253-9
pubmed: 7476085
Magn Reson Med. 2018 Mar;79(3):1241-1250
pubmed: 28618085
Prog Nucl Magn Reson Spectrosc. 2018 Dec;109:135-159
pubmed: 30527134
J Magn Reson. 2020 Nov;320:106834
pubmed: 33022563

Auteurs

Chloé Najac (C)

C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.

Vincent O Boer (VO)

Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.

Hermien E Kan (HE)

C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.

Andrew G Webb (AG)

C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.

Itamar Ronen (I)

C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH