Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 07 2022
14 07 2022
Historique:
received:
24
11
2021
accepted:
21
06
2022
entrez:
14
7
2022
pubmed:
15
7
2022
medline:
19
7
2022
Statut:
epublish
Résumé
Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.
Identifiants
pubmed: 35835759
doi: 10.1038/s41467-022-31515-w
pii: 10.1038/s41467-022-31515-w
pmc: PMC9283417
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4092Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
DeVries, H. The coefficient of mutation in Oenothera biennis L. Botanical Gaz. 59, 169–196 (1915).
doi: 10.1086/331526
Blakeslee, A. F. Types of mutations and their possible significance in evolution. Am. Naturalist 55, 254–267 (1921).
doi: 10.1086/279810
Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).
pubmed: 28502977
doi: 10.1038/nrg.2017.26
Muller, H. J. Why polyploidy is rarer in animals than in plants. Am. Naturalist 59, 346–353 (1925).
doi: 10.1086/280047
Orr, H. A. Why polyploidy is rarer in animals than in plants revisited. Am. Naturalist 136, 759–770 (1990).
doi: 10.1086/285130
Mable, B. K. ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol. J. Linn. Soc. 82, 453–466 (2004).
doi: 10.1111/j.1095-8312.2004.00332.x
Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. T. R. Soc. B 376, https://doi.org/10.1098/rstb.2020.0103 (2021).
Stöck, M. & Lamatsch, D. K. Why comparing polyploidy research in animals and plants. Cytogenet. Genome Res. 140, 75–78 (2013).
pubmed: 23899808
doi: 10.1159/000353304
Lamatsch, D. K. & Stöck, M. In Lost Sex. Lost Sex: The Evolutionary Biology of Parthenogenesis 399–432 (Springer, 2009).
Zhou, L. & Gui, J. Natural and artificial polyploids in aquaculture. Aquac. Fish. 2, 103–111 (2017).
doi: 10.1016/j.aaf.2017.04.003
Kalous, L., Bohlen, J., Rylková, K. & Petrtýl, M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 23, 11–18 (2012).
Chen, D. et al. The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc. Natl. Acad. Sci. USA 117, 29775–29785 (2020).
pubmed: 33139555
pmcid: 7703540
doi: 10.1073/pnas.2005545117
Kon, T. et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 30, 2260–2274.e2266 (2020).
pubmed: 32392470
doi: 10.1016/j.cub.2020.04.034
Xu, P. et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 46, 1212–1219 (2014).
pubmed: 25240282
doi: 10.1038/ng.3098
Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380-383, 13–20 (2013).
doi: 10.1016/j.aquaculture.2012.11.027
van der Veer, G. & Nentwig, W. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol. Freshw. Fish. 24, 646–656 (2015).
doi: 10.1111/eff.12181
Penáz, M., Rab, P. & Prokes, M. Cytological Analysis, Gynogenesis and Early Development of Carassius auratus gibelio (Academia, 1979).
Mishina, T. et al. Interploidy gene flow involving the sexual-asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish. Sci. Rep. 11, 1–12 (2021).
doi: 10.1038/s41598-021-01754-w
Ding, M. et al. Genomic anatomy of male-specific microchromosomes in a gynogenetic fish. PLoS Genet. 17, e1009760 (2021).
pubmed: 34491994
pmcid: 8448357
doi: 10.1371/journal.pgen.1009760
Knytl, M., Kalous, L., Symonová, R., Rylková, K. & Ráb, P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet. Genome Res. 139, 276–283 (2013).
pubmed: 23652770
doi: 10.1159/000350689
Yang, L., Yang, S.-T., Wei, X.-H. & Gui, J.-F. Genetic diversity among different clones of the Gynogenetic Silver Crucian Carp, Carassius auratus gibelio, revealed by Transferrin and Isozyme Markers. Biochem. Genet. 39, 213225 (2001).
doi: 10.1023/A:1010297426390
Luo, J. et al. From asymmetrical to balanced genomic diversification during rediploidization: subgenomic evolution in allotetraploid fish. Sci. Adv. 6, eaaz7677 (2020).
pubmed: 32766441
pmcid: 7385415
doi: 10.1126/sciadv.aaz7677
Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).
pubmed: 27762356
pmcid: 5313049
doi: 10.1038/nature19840
Du, K. et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841–852 (2020).
pubmed: 32231327
pmcid: 7269910
doi: 10.1038/s41559-020-1166-x
Wen, M. et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics 21, 552 (2020).
pubmed: 32781981
pmcid: 7430817
doi: 10.1186/s12864-020-06959-3
David, L., Blum, S., Feldman, M. W., Lavi, U. & Hillel, J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol. Biol. Evol. 20, 1425–1434 (2003).
pubmed: 12832638
doi: 10.1093/molbev/msg173
Li, X.-Y. et al. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol. Phylogenet. Evol. 78, 96–104 (2014).
pubmed: 24859683
doi: 10.1016/j.ympev.2014.05.005
Mendiburu, A. O. & Peloquin, S. Sexual polyploidization and depolyploidization: some terminology and definitions. Theor. Appl. Genet. 48, 137143 (1976).
doi: 10.1007/BF00281656
Xu, P. et al. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat. Commun. 10, 4625 (2019).
pubmed: 31604932
pmcid: 6789147
doi: 10.1038/s41467-019-12644-1
Li, J.-T. et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 53, 1493–1503 (2021).
pubmed: 34594040
pmcid: 8492472
doi: 10.1038/s41588-021-00933-9
Bohutínská, M. et al. Genomic novelty versus convergence in the basis of adaptation to whole genome duplication. bioRxiv, https://doi.org/10.1101/2020.01.31.929109 (2020).
Chen, Z. et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 5, eaav0547 (2019).
pubmed: 31249862
pmcid: 6594761
doi: 10.1126/sciadv.aav0547
Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).
pubmed: 33239791
pmcid: 7759465
doi: 10.1038/s41586-020-2961-x
Scott, M. F. et al. Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 22, 137 (2021).
pubmed: 33957956
pmcid: 8101041
doi: 10.1186/s13059-021-02354-7
Hu, Y. et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51, 739–748 (2019).
pubmed: 30886425
doi: 10.1038/s41588-019-0371-5
Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565–1573 (2018).
pubmed: 30297971
doi: 10.1038/s41588-018-0237-2
Krasileva, K. V. et al. Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol. 14, R66 (2013).
pubmed: 23800085
pmcid: 4053977
doi: 10.1186/gb-2013-14-6-r66
Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 28, https://doi.org/10.1093/dnares/dsab008 (2021).
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
pubmed: 33911273
pmcid: 8081667
doi: 10.1038/s41586-021-03451-0
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
pubmed: 28387841
doi: 10.1093/molbev/msx116
Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA 90, 4087–4091 (1993).
pubmed: 8483925
pmcid: 46451
doi: 10.1073/pnas.90.9.4087
Fasano, C. et al. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol. 210, 1382–1394 (2016).
pubmed: 26915816
doi: 10.1111/nph.13878
Comai, L., Madlung, A., Josefsson, C. & Tyagi, A. Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 358, 1149–1155 (2003).
doi: 10.1098/rstb.2003.1305
Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).
pubmed: 29725103
doi: 10.1038/s41477-018-0136-7
Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).
pubmed: 32344327
doi: 10.1016/j.pbi.2020.03.004
De Smet, R. et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl Acad. Sci. USA 110, 2898–2903 (2013).
pubmed: 23382190
pmcid: 3581894
doi: 10.1073/pnas.1300127110
Pikaard, C. S. Nucleolar dominance and silencing of transcription. Trends Plant Sci. 4, 478–483 (1999).
pubmed: 10562732
doi: 10.1016/S1360-1385(99)01501-0
Lynch, M., Conery, J. & Bürger, R. Mutational meltdowns in sexual populations. Evolution 49, 1067–1080 (1995).
pubmed: 28568521
doi: 10.1111/j.1558-5646.1995.tb04434.x
Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).
pubmed: 17600208
pmcid: 4737438
doi: 10.1126/science.1143986
Baniaga, A. E., Marx, H. E., Arrigo, N. & Barker, M. S. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23, 68–78 (2020).
pubmed: 31637845
doi: 10.1111/ele.13402
Ficetola, G. F. & Stöck, M. Do hybrid‐origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? J. Biogeogr. 43, 703–715 (2016).
doi: 10.1111/jbi.12667
Zhang, J. et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 5, 10898 (2015).
pubmed: 26042995
pmcid: 4455247
doi: 10.1038/srep10898
Lamatsch, D. K., Steinlein, C., Schmid, M. & Schartl, M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry 39, 91–95 (2000).
pubmed: 10679726
doi: 10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4
Alemán, J. L. F. & Oufaska, Y. In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education 68–72 (Association for Computing Machinery, Bilkent, 2010).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2013).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).
Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis (2nd edn), Measurement: Interdisciplinary Research and Perspectives, 17, 160–167 (Routledge, 2019).
Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R Package Version, 2 (Science Open, 2009).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
pubmed: 33526886
pmcid: 7961889
doi: 10.1038/s41592-020-01056-5
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249
pmcid: 5846465
doi: 10.1016/j.cels.2016.07.002
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562
pmcid: 5635820
doi: 10.1126/science.aal3327
Robinson, J. T. et al. Juicebox. js provides a cloud-based visualization system for Hi-C data. Cell Syst. 6, 256–258.e251 (2018).
pubmed: 29428417
pmcid: 6047755
doi: 10.1016/j.cels.2018.01.001
Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).
pubmed: 27153593
pmcid: 4937194
doi: 10.1093/bioinformatics/btw152
Kuhl, H. et al. CSA: a high-throughput chromosome-scale assembly pipeline for vertebrate genomes. GigaScience 9, giaa034 (2020).
pubmed: 32449778
pmcid: 7247394
doi: 10.1093/gigascience/giaa034
Sun, L. et al. Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of nanopore sequencing, Bionano and Hi-C technology. Mol. Ecol. Resour. 20, 1361–1371 (2020).
pubmed: 32419357
doi: 10.1111/1755-0998.13190
Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).
pubmed: 21209072
pmcid: 3044862
doi: 10.1101/gr.113985.110
Frith, M. C. & Kawaguchi, R. Split-alignment of genomes finds orthologies more accurately. Genome Biol. 16, 106 (2015).
pubmed: 25994148
pmcid: 4464727
doi: 10.1186/s13059-015-0670-9
Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).
pubmed: 15060014
pmcid: 383317
doi: 10.1101/gr.1933104
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700
pmcid: 7182206
doi: 10.1093/molbev/msaa015
Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl Acad. Sci. USA 100, 1148411489 (2003).
doi: 10.1073/pnas.1932072100
Sharma, V. & Hiller, M. Increased alignment sensitivity improves the usage of genome alignments for comparative gene annotation. Nucleic Acids Res. 45, 8369–8377 (2017).
pubmed: 28645144
pmcid: 5737078
doi: 10.1093/nar/gkx554
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0. 1996-2010 http://www.repeatmasker.org (2015).
Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. 2008-2015 http://www.repeatmasker.org (2008).
Iwata, H. & Gotoh, O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 40, e161–e161 (2012).
pubmed: 22848105
pmcid: 3488211
doi: 10.1093/nar/gks708
Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).
pubmed: 15123596
pmcid: 479130
doi: 10.1101/gr.1865504
She, R., Chu, J. S.-C., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).
pubmed: 18838612
pmcid: 2612959
doi: 10.1101/gr.082081.108
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
pubmed: 30423086
pmcid: 6129281
doi: 10.1093/bioinformatics/bty560
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
pubmed: 16845043
pmcid: 1538822
doi: 10.1093/nar/gkl200
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
pubmed: 26059717
doi: 10.1093/bioinformatics/btv351
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 1–9 (2009).
doi: 10.1186/1471-2105-10-421
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007
doi: 10.1038/nmeth.3176
Chan, P. P. & Lowe, T. M. In Gene Prediction, Methods and Protocols. Methods in Molecular Biology 1962 1–14 (Springer, 2019).
Lagesen, K. et al. RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 35, 3100–3108 (2007).
pubmed: 17452365
pmcid: 1888812
doi: 10.1093/nar/gkm160
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).
pubmed: 24008419
pmcid: 3810854
doi: 10.1093/bioinformatics/btt509
Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–D342 (2018).
pubmed: 29112718
doi: 10.1093/nar/gkx1038
Kuhn, R. M., Haussler, D. & Kent, W. J. The UCSC genome browser and associated tools. Brief. Bioinforma. 14, 144–161 (2013).
doi: 10.1093/bib/bbs038
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656664 (2002).
Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899–1900 (2010).
pubmed: 20427515
pmcid: 2905546
doi: 10.1093/bioinformatics/btq224
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).
pubmed: 16845082
pmcid: 1538804
doi: 10.1093/nar/gkl315
Yang, Z. User guide PAML: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 3, https://doi.org/10.1093/molbev/msm088 (2009).
Wang, Y. et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 47, 625–631 (2015).
pubmed: 25938946
doi: 10.1038/ng.3280