Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 07 2022
Historique:
received: 24 11 2021
accepted: 21 06 2022
entrez: 14 7 2022
pubmed: 15 7 2022
medline: 19 7 2022
Statut: epublish

Résumé

Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.

Identifiants

pubmed: 35835759
doi: 10.1038/s41467-022-31515-w
pii: 10.1038/s41467-022-31515-w
pmc: PMC9283417
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4092

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

DeVries, H. The coefficient of mutation in Oenothera biennis L. Botanical Gaz. 59, 169–196 (1915).
doi: 10.1086/331526
Blakeslee, A. F. Types of mutations and their possible significance in evolution. Am. Naturalist 55, 254–267 (1921).
doi: 10.1086/279810
Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).
pubmed: 28502977 doi: 10.1038/nrg.2017.26
Muller, H. J. Why polyploidy is rarer in animals than in plants. Am. Naturalist 59, 346–353 (1925).
doi: 10.1086/280047
Orr, H. A. Why polyploidy is rarer in animals than in plants revisited. Am. Naturalist 136, 759–770 (1990).
doi: 10.1086/285130
Mable, B. K. ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol. J. Linn. Soc. 82, 453–466 (2004).
doi: 10.1111/j.1095-8312.2004.00332.x
Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. T. R. Soc. B 376, https://doi.org/10.1098/rstb.2020.0103 (2021).
Stöck, M. & Lamatsch, D. K. Why comparing polyploidy research in animals and plants. Cytogenet. Genome Res. 140, 75–78 (2013).
pubmed: 23899808 doi: 10.1159/000353304
Lamatsch, D. K. & Stöck, M. In Lost Sex. Lost Sex: The Evolutionary Biology of Parthenogenesis 399–432 (Springer, 2009).
Zhou, L. & Gui, J. Natural and artificial polyploids in aquaculture. Aquac. Fish. 2, 103–111 (2017).
doi: 10.1016/j.aaf.2017.04.003
Kalous, L., Bohlen, J., Rylková, K. & Petrtýl, M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 23, 11–18 (2012).
Chen, D. et al. The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc. Natl. Acad. Sci. USA 117, 29775–29785 (2020).
pubmed: 33139555 pmcid: 7703540 doi: 10.1073/pnas.2005545117
Kon, T. et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 30, 2260–2274.e2266 (2020).
pubmed: 32392470 doi: 10.1016/j.cub.2020.04.034
Xu, P. et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 46, 1212–1219 (2014).
pubmed: 25240282 doi: 10.1038/ng.3098
Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380-383, 13–20 (2013).
doi: 10.1016/j.aquaculture.2012.11.027
van der Veer, G. & Nentwig, W. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol. Freshw. Fish. 24, 646–656 (2015).
doi: 10.1111/eff.12181
Penáz, M., Rab, P. & Prokes, M. Cytological Analysis, Gynogenesis and Early Development of Carassius auratus gibelio (Academia, 1979).
Mishina, T. et al. Interploidy gene flow involving the sexual-asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish. Sci. Rep. 11, 1–12 (2021).
doi: 10.1038/s41598-021-01754-w
Ding, M. et al. Genomic anatomy of male-specific microchromosomes in a gynogenetic fish. PLoS Genet. 17, e1009760 (2021).
pubmed: 34491994 pmcid: 8448357 doi: 10.1371/journal.pgen.1009760
Knytl, M., Kalous, L., Symonová, R., Rylková, K. & Ráb, P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet. Genome Res. 139, 276–283 (2013).
pubmed: 23652770 doi: 10.1159/000350689
Yang, L., Yang, S.-T., Wei, X.-H. & Gui, J.-F. Genetic diversity among different clones of the Gynogenetic Silver Crucian Carp, Carassius auratus gibelio, revealed by Transferrin and Isozyme Markers. Biochem. Genet. 39, 213225 (2001).
doi: 10.1023/A:1010297426390
Luo, J. et al. From asymmetrical to balanced genomic diversification during rediploidization: subgenomic evolution in allotetraploid fish. Sci. Adv. 6, eaaz7677 (2020).
pubmed: 32766441 pmcid: 7385415 doi: 10.1126/sciadv.aaz7677
Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).
pubmed: 27762356 pmcid: 5313049 doi: 10.1038/nature19840
Du, K. et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841–852 (2020).
pubmed: 32231327 pmcid: 7269910 doi: 10.1038/s41559-020-1166-x
Wen, M. et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics 21, 552 (2020).
pubmed: 32781981 pmcid: 7430817 doi: 10.1186/s12864-020-06959-3
David, L., Blum, S., Feldman, M. W., Lavi, U. & Hillel, J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol. Biol. Evol. 20, 1425–1434 (2003).
pubmed: 12832638 doi: 10.1093/molbev/msg173
Li, X.-Y. et al. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol. Phylogenet. Evol. 78, 96–104 (2014).
pubmed: 24859683 doi: 10.1016/j.ympev.2014.05.005
Mendiburu, A. O. & Peloquin, S. Sexual polyploidization and depolyploidization: some terminology and definitions. Theor. Appl. Genet. 48, 137143 (1976).
doi: 10.1007/BF00281656
Xu, P. et al. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat. Commun. 10, 4625 (2019).
pubmed: 31604932 pmcid: 6789147 doi: 10.1038/s41467-019-12644-1
Li, J.-T. et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 53, 1493–1503 (2021).
pubmed: 34594040 pmcid: 8492472 doi: 10.1038/s41588-021-00933-9
Bohutínská, M. et al. Genomic novelty versus convergence in the basis of adaptation to whole genome duplication. bioRxiv, https://doi.org/10.1101/2020.01.31.929109 (2020).
Chen, Z. et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 5, eaav0547 (2019).
pubmed: 31249862 pmcid: 6594761 doi: 10.1126/sciadv.aav0547
Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).
pubmed: 33239791 pmcid: 7759465 doi: 10.1038/s41586-020-2961-x
Scott, M. F. et al. Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 22, 137 (2021).
pubmed: 33957956 pmcid: 8101041 doi: 10.1186/s13059-021-02354-7
Hu, Y. et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51, 739–748 (2019).
pubmed: 30886425 doi: 10.1038/s41588-019-0371-5
Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565–1573 (2018).
pubmed: 30297971 doi: 10.1038/s41588-018-0237-2
Krasileva, K. V. et al. Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol. 14, R66 (2013).
pubmed: 23800085 pmcid: 4053977 doi: 10.1186/gb-2013-14-6-r66
Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 28, https://doi.org/10.1093/dnares/dsab008 (2021).
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
pubmed: 33911273 pmcid: 8081667 doi: 10.1038/s41586-021-03451-0
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
pubmed: 28387841 doi: 10.1093/molbev/msx116
Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA 90, 4087–4091 (1993).
pubmed: 8483925 pmcid: 46451 doi: 10.1073/pnas.90.9.4087
Fasano, C. et al. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol. 210, 1382–1394 (2016).
pubmed: 26915816 doi: 10.1111/nph.13878
Comai, L., Madlung, A., Josefsson, C. & Tyagi, A. Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 358, 1149–1155 (2003).
doi: 10.1098/rstb.2003.1305
Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).
pubmed: 29725103 doi: 10.1038/s41477-018-0136-7
Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).
pubmed: 32344327 doi: 10.1016/j.pbi.2020.03.004
De Smet, R. et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl Acad. Sci. USA 110, 2898–2903 (2013).
pubmed: 23382190 pmcid: 3581894 doi: 10.1073/pnas.1300127110
Pikaard, C. S. Nucleolar dominance and silencing of transcription. Trends Plant Sci. 4, 478–483 (1999).
pubmed: 10562732 doi: 10.1016/S1360-1385(99)01501-0
Lynch, M., Conery, J. & Bürger, R. Mutational meltdowns in sexual populations. Evolution 49, 1067–1080 (1995).
pubmed: 28568521 doi: 10.1111/j.1558-5646.1995.tb04434.x
Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).
pubmed: 17600208 pmcid: 4737438 doi: 10.1126/science.1143986
Baniaga, A. E., Marx, H. E., Arrigo, N. & Barker, M. S. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23, 68–78 (2020).
pubmed: 31637845 doi: 10.1111/ele.13402
Ficetola, G. F. & Stöck, M. Do hybrid‐origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? J. Biogeogr. 43, 703–715 (2016).
doi: 10.1111/jbi.12667
Zhang, J. et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 5, 10898 (2015).
pubmed: 26042995 pmcid: 4455247 doi: 10.1038/srep10898
Lamatsch, D. K., Steinlein, C., Schmid, M. & Schartl, M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry 39, 91–95 (2000).
pubmed: 10679726 doi: 10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4
Alemán, J. L. F. & Oufaska, Y. In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education 68–72 (Association for Computing Machinery, Bilkent, 2010).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2013).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).
Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis (2nd edn), Measurement: Interdisciplinary Research and Perspectives, 17, 160–167 (Routledge, 2019).
Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R Package Version, 2 (Science Open, 2009).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
pubmed: 33526886 pmcid: 7961889 doi: 10.1038/s41592-020-01056-5
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465 doi: 10.1016/j.cels.2016.07.002
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562 pmcid: 5635820 doi: 10.1126/science.aal3327
Robinson, J. T. et al. Juicebox. js provides a cloud-based visualization system for Hi-C data. Cell Syst. 6, 256–258.e251 (2018).
pubmed: 29428417 pmcid: 6047755 doi: 10.1016/j.cels.2018.01.001
Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).
pubmed: 27153593 pmcid: 4937194 doi: 10.1093/bioinformatics/btw152
Kuhl, H. et al. CSA: a high-throughput chromosome-scale assembly pipeline for vertebrate genomes. GigaScience 9, giaa034 (2020).
pubmed: 32449778 pmcid: 7247394 doi: 10.1093/gigascience/giaa034
Sun, L. et al. Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of nanopore sequencing, Bionano and Hi-C technology. Mol. Ecol. Resour. 20, 1361–1371 (2020).
pubmed: 32419357 doi: 10.1111/1755-0998.13190
Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).
pubmed: 21209072 pmcid: 3044862 doi: 10.1101/gr.113985.110
Frith, M. C. & Kawaguchi, R. Split-alignment of genomes finds orthologies more accurately. Genome Biol. 16, 106 (2015).
pubmed: 25994148 pmcid: 4464727 doi: 10.1186/s13059-015-0670-9
Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).
pubmed: 15060014 pmcid: 383317 doi: 10.1101/gr.1933104
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700 pmcid: 7182206 doi: 10.1093/molbev/msaa015
Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl Acad. Sci. USA 100, 1148411489 (2003).
doi: 10.1073/pnas.1932072100
Sharma, V. & Hiller, M. Increased alignment sensitivity improves the usage of genome alignments for comparative gene annotation. Nucleic Acids Res. 45, 8369–8377 (2017).
pubmed: 28645144 pmcid: 5737078 doi: 10.1093/nar/gkx554
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0. 1996-2010 http://www.repeatmasker.org (2015).
Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. 2008-2015 http://www.repeatmasker.org (2008).
Iwata, H. & Gotoh, O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 40, e161–e161 (2012).
pubmed: 22848105 pmcid: 3488211 doi: 10.1093/nar/gks708
Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).
pubmed: 15123596 pmcid: 479130 doi: 10.1101/gr.1865504
She, R., Chu, J. S.-C., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).
pubmed: 18838612 pmcid: 2612959 doi: 10.1101/gr.082081.108
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
pubmed: 30423086 pmcid: 6129281 doi: 10.1093/bioinformatics/bty560
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850 pmcid: 4643835 doi: 10.1038/nbt.3122
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
pubmed: 16845043 pmcid: 1538822 doi: 10.1093/nar/gkl200
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
pubmed: 26059717 doi: 10.1093/bioinformatics/btv351
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 1–9 (2009).
doi: 10.1186/1471-2105-10-421
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007 doi: 10.1038/nmeth.3176
Chan, P. P. & Lowe, T. M. In Gene Prediction, Methods and Protocols. Methods in Molecular Biology 1962 1–14 (Springer, 2019).
Lagesen, K. et al. RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 35, 3100–3108 (2007).
pubmed: 17452365 pmcid: 1888812 doi: 10.1093/nar/gkm160
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).
pubmed: 24008419 pmcid: 3810854 doi: 10.1093/bioinformatics/btt509
Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–D342 (2018).
pubmed: 29112718 doi: 10.1093/nar/gkx1038
Kuhn, R. M., Haussler, D. & Kent, W. J. The UCSC genome browser and associated tools. Brief. Bioinforma. 14, 144–161 (2013).
doi: 10.1093/bib/bbs038
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656664 (2002).
Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899–1900 (2010).
pubmed: 20427515 pmcid: 2905546 doi: 10.1093/bioinformatics/btq224
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).
pubmed: 16845082 pmcid: 1538804 doi: 10.1093/nar/gkl315
Yang, Z. User guide PAML: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 3, https://doi.org/10.1093/molbev/msm088 (2009).
Wang, Y. et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 47, 625–631 (2015).
pubmed: 25938946 doi: 10.1038/ng.3280

Auteurs

Heiner Kuhl (H)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany.

Kang Du (K)

University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany.
Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA.

Manfred Schartl (M)

University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany.
Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA.

Lukáš Kalous (L)

Czech University of Life Sciences Prague, Prague, Czech Republic.

Matthias Stöck (M)

Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany. matthias.stoeck@igb-berlin.de.
Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan. matthias.stoeck@igb-berlin.de.

Dunja K Lamatsch (DK)

Research Department for Limnology, Mondsee, University of Innsbruck, A-5310, Mondsee, Austria. dunja.lamatsch@uibk.ac.at.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH