Evaluation of Cytotoxic, Necrotic, Apoptotic, and Autophagic Effects of Methamphetamine and 3,4-Methylenedioxymethamphetamine on U-87 MG (Glial) and B104-1-1 (Neuronal) Cell Lines.
3,4-Methylenedioxymethamphetamine
Apoptosis
Autophagy
Cytotoxicity
Methamphetamine
Necrosis
Journal
Neurotoxicity research
ISSN: 1476-3524
Titre abrégé: Neurotox Res
Pays: United States
ID NLM: 100929017
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
01
06
2022
accepted:
01
07
2022
revised:
20
06
2022
pubmed:
16
7
2022
medline:
30
9
2022
entrez:
15
7
2022
Statut:
ppublish
Résumé
Methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) are empathogen (entactogen) psychoactive designer drugs which are mainly used for recreational purposes. Both MA and MDMA are central nervous system stimulants which are classified as monoamine neurotransmitter reuptake inhibitors. They have strong cytotoxic effects on dopaminergic and serotonergic neurons. Neurotoxicities of MA and MDMA by glial activation have been shown. The present work has investigated and measured cytotoxic, necrotic and apoptotic, and autophagic effects of MA and MDMA on U-87 MG (glial) and B104-1-1 (neuronal) cell lines by janus green, ethidium bromide/acridine orange, and monodansylcadaverine/propidium iodide staining to evaluate and compare their effects on glial and neuronal cells, respectively. The results of the present work showed that: (1) MDMA induced more potent mitochondrial toxicity, stronger necrotic and autophagic effects than MA in both B104-1-1 (neuronal) and U-87 MG (glial) cell lines; (2) although MDMA induced stronger apoptotic effect than MA on U-87 MG cell line, it had equal apoptotic effect on B104-1-1 cell line with MA; and (3) MDMA induced more potent mitochondrial toxicity, stronger necrotic, apoptotic, and autophagic effects than MA in B104-1-1 cell line than U-87 MG cell line.
Identifiants
pubmed: 35838908
doi: 10.1007/s12640-022-00543-1
pii: 10.1007/s12640-022-00543-1
doi:
Substances chimiques
Central Nervous System Stimulants
0
Designer Drugs
0
Propidium
36015-30-2
Methamphetamine
44RAL3456C
Ethidium
EN464416SI
Acridine Orange
F30N4O6XVV
N-Methyl-3,4-methylenedioxyamphetamine
KE1SEN21RM
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1499-1515Subventions
Organisme : Iran University of Medical Sciences
ID : 14776
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ahmad F, Alamoudi W, Haque S, Salahuddin M, Alsamman K (2018) Simple, reliable, and time-efficient colorimetric method for the assessment of mitochondrial function and toxicity. Bosn J Basic Med Sci 18(4):367–374
doi: 10.17305/bjbms.2018.3323
Biederbick A, Kern HF, Elsässer HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66(1):3–14
pubmed: 7750517
Chan LL-Y, Shen D, Wilkinson AR, Patton W, Lai N, Chan E, Kuksin D, Lin B, Qiu J (2012) A novel image-based cytometry method for autophagy detection in living cells. Autophagy 8(9):1371–1382
doi: 10.4161/auto.21028
Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36:1–22
doi: 10.1016/S0165-0173(01)00054-6
D’Brant LY, Desta H, Khoo TC, Sharikova AV, Mahajan SD, Khmaladze A (2019) Methamphetamine-induced apoptosis in glial cells examined under marker-free imaging modalities. J Biomed Opt 24(4):046503
doi: 10.1117/1.JBO.24.4.046503
Foroughi K, Jahanbani S, Khaksari M, Shayannia A (2020) Obestatin attenuated methamphetamine-induced PC12 cells neurotoxicity via inhibiting autophagy and apoptosis. Hum Exp Toxicol 39(3):301–310
doi: 10.1177/0960327119886036
Freshney RI (2016) Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons Inc, Hoboken
Guerreiro DF, Carmo AL, da Silva JA, Navarro R, Góis C (2011) Club drugs. Acta Med Port 24(5):739–756
pubmed: 22525626
Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 97(1):37–44
doi: 10.1016/j.lfs.2013.07.014
Henderson GL (1997) Designer drugs. In: Brandenberger H, Maes RAA (eds) Analytical toxicology for clinical, forensic and pharmaceutical chemists, 1st edn. De Gruyter, New York, pp 685–704
doi: 10.1515/9783110881615.685
Jayanthi S, Deng X, Noailles P-AH, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18(2):238–251
doi: 10.1096/fj.03-0295com
Johnson ID, Spence MTZ (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies. Invitrogen, Eugene
Li I-H, Ma K-H, Weng S-J, Huang S-S, Liang C-M, Huang Y-S 2014 Autophagy activation is involved in 3,4-methylenedioxymethamphetamine (‘ecstasy’)-induced neurotoxicity in cultured cortical neurons. PLoS One 9(12):e116565
Mercer LD, Higgins GC, Lau CL, Lawrence AJ, Beart PM (2017) MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochem Int 105:80–90
doi: 10.1016/j.neuint.2017.01.010
Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326
doi: 10.1016/j.cell.2010.01.028
Moffat AC, Osselton MD, Widdop B (2011) Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material. Pharmaceutical Press, London
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Prog Neurobiol 155:149–170
doi: 10.1016/j.pneurobio.2015.09.011
Moser VC, Aschner M, Richardson JR, Bowman AB, Richardson RJ (2019) Toxic responses of the nervous system. In: Klaassen CD (ed) Casarett and Doull’s toxicology, The basic science of poisons, 9th edn. McGraw-Hill Education, New York, pp 839–875
Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E (2003) Different glial response to methamphetamine and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn-Schmiedeberg’s Arch Pharmacol 367:490–499
doi: 10.1007/s00210-003-0747-y
Puerta E, Aguirre N (2011) Methylenedioxymethamphetamine (MDMA, ‘ecstasy’): neurodegeneration versus neuromodulation. Pharmaceuticals 4:992–1018
doi: 10.3390/ph4070992
Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12
doi: 10.1186/1472-6750-5-12
Roberts CA, Jones A, Montgomery C (2016) Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users. Neurosci Biobehav Rev 63:158–167
doi: 10.1016/j.neubiorev.2016.02.003
Schiavone S, Neri M, Maffione AB, Frisoni P, Morgese MG, Trabace L, Turillazzi E (2019) Increased iNOS and nitrosative stress in dopaminergic neurons of MDMA-exposed rats. Int J Mol Sci 20:1242
doi: 10.3390/ijms20051242
Shaerzadeh F, Streit WJ, Heysieattalab S, Khoshbouei H (2018) Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflammation 15:341
doi: 10.1186/s12974-018-1385-0
Shetab-Boushehri SV, Tamimi M, Kebriaeezadeh A (2009) Quantitative determination of 3,4-methylenedioxymethamphetamine by thin-layer chromatography in ecstasy illicit pills in Tehran. Toxicol Mech Methods 19(9):565–569
doi: 10.3109/15376510903358341
Shetab-Boushehri SM-H, Hosseini A, Rafinejad J, Ebadollahi-Natanzi A, Shetab-Boushehri SV (2022) Cytotoxic, necrotic, apoptotic, and autophagic properties of venom sac extract of Vespa orientalis in T47D and MCF10A breast cell lines. Toxin Reviews 41(1). https://doi.org/10.1080/15569543.2021.2007404
Smith SM, Ribble D, Goldstein NB, Norris DA, Shellman YG (2012) A simple technique for quantifying apoptosis in 96-well plates. In: Conn PM (ed) Laboratory methods in cell biology. Methods in cell biology, vol. 112, Elsevier, Amsterdam, pp 361–368
Va´zquez CL, Colombo MI (2009) Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. In: Klionsky DJ (ed) Autophagy in mammalian systems, Part B. Methods in enzymology, vol. 452, Academic Press, New York, pp 361–368
von Jagow R, Kampffmeyer H, Kinese M (1965) The preparation of microsomes. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 251:73–87
doi: 10.1007/BF00245731
Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, He J, Liao L, Xiong K, Yi C-X, Yan J (2018) The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front Mol Neurosci 11:186
doi: 10.3389/fnmol.2018.00186
Zakeri Z, Melendez A, Lockshin RA (2008) Detection of autophagy in cell death. In: Khosravi-Far R, Zakeri Z, Lockshin RA, Piacentini M (eds) Programmed cell death, general principles for: studying cell death, part A, methods in enzymology, vol 442. Academic Press, New York, pp 289–306
doi: 10.1016/S0076-6879(08)01415-8
Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236(2):302–308
doi: 10.1006/abio.1996.0171