Renal inflamm-aging provokes intra-graft inflammation following experimental kidney transplantation.


Journal

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
ISSN: 1600-6143
Titre abrégé: Am J Transplant
Pays: United States
ID NLM: 100968638

Informations de publication

Date de publication:
11 2022
Historique:
revised: 14 06 2022
received: 08 11 2021
accepted: 14 07 2022
pubmed: 20 7 2022
medline: 10 11 2022
entrez: 19 7 2022
Statut: ppublish

Résumé

Donor age is a major risk factor for allograft outcome in kidney transplantation. The underlying cellular mechanisms and the recipient's immune response within an aged allograft have yet not been analyzed. A comprehensive immunophenotyping of naïve and transplanted young versus aged kidneys revealed that naïve aged murine kidneys harbor significantly higher frequencies of effector/memory T cells, whereas regulatory T cells were reduced. Aged kidney-derived CD8

Identifiants

pubmed: 35851547
doi: 10.1111/ajt.17154
pii: S1600-6135(22)29970-5
doi:

Substances chimiques

navitoclax XKJ5VVK2WD

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2529-2547

Informations de copyright

© 2022 The Authors. American Journal of Transplantation published by Wiley Periodicals LLC on behalf of The American Society of Transplantation and the American Society of Transplant Surgeons.

Références

Tonelli M, Riella M. Chronic kidney disease and the ageing population. Nephron Clin Pract. 2014;128:319-322. doi:10.1159/000362458
Liu P, Quinn RR, Lam NN, et al. Progression and regression of chronic kidney disease by age among adults in a population-based cohort in Alberta, Canada. JAMA Netw Open. 2021;4:e2112828. doi:10.1001/jamanetworkopen.2021.12828
Heylen L, Thienpont B, Busschaert P, et al. Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis. Kidney Int. 2019;96:1195-1204. doi:10.1016/j.kint.2019.06.018
Favi E, Puliatti C, Iesari S, Monaco A, Ferraresso M, Cacciola R. Impact of donor age on clinical outcomes of primary single kidney transplantation from Maastricht category-III donors after circulatory death. Transplant Direct. 2018;4:e396. doi:10.1097/TXD.0000000000000835
Summers DM, Johnson RJ, Hudson A, Collett D, Watson CJ, Bradley JA. Effect of donor age and cold storage time on outcome in recipients of kidneys donated after circulatory death in the UK: a cohort study. Lancet. 2013;381:727-734. doi:10.1016/S0140-6736(12)61685-7
Martin JE, Sheaff MT. Renal ageing. J Pathol. 2007;211:198-205. doi:10.1002/path.2111
Tan JC, Busque S, Workeneh B, et al. Effects of aging on glomerular function and number in living kidney donors. Kidney Int. 2010;78:686-692. doi:10.1038/ki.2010.128
Denic A, Glassock RJ, Rule AD. Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis. 2016;23:19-28. doi:10.1053/j.ackd.2015.08.004
Tan JC, Workeneh B, Busque S, Blouch K, Derby G, Myers BD. Glomerular function, structure, and number in renal allografts from older deceased donors. J Am Soc Nephrol. 2009;20:181-188. doi:10.1681/ASN.2008030306
O'Sullivan ED, Hughes J, Ferenbach DA. Renal aging: causes and consequences. J Am Soc Nephrol. 2017;28:407-420. doi:10.1681/ASN.2015121308
Docherty MH, O'Sullivan ED, Bonventre JV, Ferenbach DA. Cellular senescence in the kidney. J Am Soc Nephrol. 2019;30:726-736. doi:10.1681/ASN.2018121251
Wiggins JE, Goyal M, Sanden SK, et al. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol. 2005;16:2953-2966. doi:10.1681/ASN.2005050488
Schroth J, Thiemermann C, Henson SM. Senescence and the aging immune system as major drivers of chronic kidney disease. Front Cell Dev Biol. 2020;8:564461. doi:10.3389/fcell.2020.564461
Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 2014;17:324-328. doi:10.1097/MCO.0000000000000065
Sis B, Tasanarong A, Khoshjou F, Dadras F, Solez K, Halloran PF. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int. 2007;71:218-226. doi:10.1038/sj.ki.5002039
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int. 2017;92:569-579. doi:10.1016/j.kint.2017.02.036
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288:518-536. doi:10.1111/joim.13141
Melk A, Schmidt BM, Vongwiwatana A, Rayner DC, Halloran PF. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant. 2005;5:1375-1382. doi:10.1111/j.1600-6143.2005.00846.x
Reutzel-Selke A, Jurisch A, Denecke C, et al. Donor age intensifies the early immune response after transplantation. Kidney Int. 2007;71:629-636. doi:10.1038/sj.ki.5002098
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol. 2021;22:97-111. doi:10.1038/s41577-021-00557-4
Stavropoulou E, Kantartzi K, Tsigalou C, et al. Microbiome, Immunosenescence, and Chronic Kidney Disease. Front Med (Lausanne). 2021;8:661203. doi:10.3389/fmed.2021.661203
Dornieden T, Sattler A, Pascual-Reguant A, et al. Signatures and specificity of tissue-resident lymphocytes identified in human renal peri-tumor and tumor tissue. J Am Soc Nephrol. 2021;32:2223-2241. doi:10.1681/ASN.2020101528
Ashraf MI, Sarwar A, Kühl AA, et al. Natural killer cells promote kidney graft rejection independently of cyclosporine A therapy. Front Immunol. 2019;10:2279. doi:10.3389/fimmu.2019.02279
Resch T, Ashraf MI, Ritschl PV, et al. Disturbances in iron homeostasis result in accelerated rejection after experimental heart transplantation. J Heart Lung Transplant. 2017;36:732-743. doi:10.1016/j.healun.2017.03.004
Dumas SJ, Meta E, Conchinha NV, et al. Protocols for endothelial cell isolation from mouse tissues: kidney, spleen, and testis. STAR Protoc. 2021;28:100523. doi:10.1016/j.xpro.2021.100523
Ritschl PV, Ashraf MI, Oberhuber R, et al. Donor brain death leads to differential immune activation in solid organs but does not accelerate ischaemia-reperfusion injury. J Pathol. 2016;239:84-96. doi:10.1002/path.4704
Buhl EM, Djudjaj S, Klinkhammer BM, et al. Dysregulated mesenchymal PDGFR-beta drives kidney fibrosis. EMBO Mol Med. 2020;12:e11021. doi:10.15252/emmm.201911021
Stamatiades EG, Tremblay ME, Bohm M, et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell. 2016;166:991-1003. doi:10.1016/j.cell.2016.06.058
Günther J, Resch T, Hackl H, et al. Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. Kidney Int. 2017;91:1447-1463. doi:10.1016/j.kint.2016.12.018
Stegmann KA, Robertson F, Hansi N, et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci Rep. 2016;6:26157. doi:10.1038/srep26157
Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation of mouse NK cells is a 4-stage developmental program. Blood. 2009;113:5488-5496. doi:10.1182/blood-2008-10-187179
Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22:78-83. doi:10.1038/nm.4010
Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front Pharmacol. 2020;11:564108. doi:10.3389/fphar.2020.564108
Mylonss KJ, O'Sullivan ED, Humphries D, et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med. 2021;13:eabb0203. doi:10.1126/scitranslmed.abb0203
Clements ME, Chaber CJ, Ledbetter SR, Zuk A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS One. 2013;8:e70464. doi:10.1371/journal.pone.0070464
Vanholder R, Domínguez-Gil B, Busic M, et al. Organ donation and transplantation: a multi-stakeholder call to action. Nat Rev Nephrol. 2021;17:554-568. doi:10.1038/s41581-021-00425-3
Dreyer GJ, Hemke AC, Reinders ME, de Fijter JW. Transplanting the elderly: balancing aging with histocompatibility. Transplant Rev (Orlando). 2015;29:205-211. doi:10.1016/j.trre.2015.08.003
Rodwell GE, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L, et al. A transcriptional profile of aging in the human kidney. PLoS Biol 2: e427, 2004. 10.1371/journal.pbio.0020427
Rowland J, Akbarov A, Eales J, et al. Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney Int. 2019;95:624-635. doi:10.1016/j.kint.2018.10.029
Epping MT, Meijer LA, Krijgsman O, Bos JL, Pandolfi PP, Bernards R. TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nat Cell Biol. 2011;13:102-108. doi:10.1038/ncb2142
Kalathookunnel Antony A, Lian Z, Wu H. T cells in adipose tissue in aging. Front Immunol. 2018;9:2945. doi:10.3389/fimmu.2018.02945
Li M, Yao D, Zeng X, et al. Age related human T cell subset evolution and senescence. Immun Ageing. 2019;16:24. doi:10.1186/s12979-019-0165-8
Yang X, Wang X, Lei L, et al. Age-related gene alteration in naïve and memory t cells using precise age-tracking model. Front Cell Dev Biol. 2021;8:624380. doi:10.3389/fcell.2020.624380
Chidrawar SM, Khan N, Chan YL, Nayak L, Moss PA. Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing. 2006;3:10. doi:10.1186/1742-4933-3-10
Gounder SS, Abdullah BJJ, Radzuanb NEIBM, et al. Effect of aging on NK cell population and their proliferation at ex vivo culture condition. Anal Cell Pathol (Amst). 2018;2018:7871814. doi:10.1155/2018/7871814
Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11:751-759. doi:10.1111/j.1474-9726.2012.00839.x
Lutz CT, Moore MB, Bradley S, Shelton BJ, Lutgendorf SK. Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev. 2005;126:722-731. doi:10.1016/j.mad.2005.01.004
Paust S, Gill HS, Wang BZ, et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol. 2010;11:1127-1135. doi:10.1038/ni.1953
Hydes T, Noll A, Salinas-Riester G, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018;6:34-46. doi:10.1002/iid3.190
Zhang ZX, Huang X, Jiang J, et al. Natural killer cells mediate long-term kidney allograft injury. Transplantation. 2015;99(5):916-924. doi:10.1097/TP.0000000000000665
Kohei N, Tanaka T, Tanabe K, et al. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney Int. 2016;89(6):1293-1306. doi:10.1016/j.kint.2016.02.030
Yagisawa T, Tanaka T, Miyairi S, et al. In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney Int. 2019;95(2):350-362. doi:10.1016/j.kint.2018.08.041
Kildey K, Francis RS, Hultin S, et al. Specialized roles of human natural killer cell subsets in kidney transplant rejection. Front Immunol. 2019;10:1877. doi:10.3389/fimmu.2019.01877
Iske J, Seyda M, Heinbokel T, et al. Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun. 2020;11(1):4289. doi:10.1038/s41467-020-18039-x
Abou-Daya KI, Tieu R, Zhao D, et al. Resident memory T cells form during persistent antigen exposure leading to allograft rejection. Sci Immunol. 2021;6(57):eabc8122. doi:10.1126/sciimmunol.abc8122
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246-1256. doi:10.1038/s41591-018-0092-9
Palmer AK, Xu M, Zhu Y, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18(3):e12950. doi:10.1111/acel.12950
Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. 2019;18(3):e12931. doi:10.1111/acel.12931
Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27(17):2652-2660.e4. doi:10.1016/j.cub.2017.07.033
Hall BM, Balan V, Gleiberman AS, et al. p16(Ink4a) and senescence-associated beta-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017;9(8):1867-1884. doi:10.18632/aging.101268
Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644-658. doi:10.1111/acel.12344
Kim SR, Puranik AS, Jiang K, et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J Am Soc Nephrol. 2021;32(8):1987-2004. doi:10.1681/ASN.2020091373
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, et al.: Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2020;52:102-595. doi: 10.1016/j.ebiom.2019.12.004 EBioMedicine 47:446-456, 2019 doi: 10.1016/j.ebiom.2019.08.069.

Auteurs

An He (A)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Attia Sarwar (A)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Linda Marie Laura Thole (LML)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Janine Siegle (J)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Arne Sattler (A)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Muhammad Imtiaz Ashraf (MI)

Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Vanessa Proß (V)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Carolin Stahl (C)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Theresa Dornieden (T)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Yasmin Bergmann (Y)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Paul Viktor Ritschl (PV)

Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Susanne Ebner (S)

Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria.

Karolin Wiebke Hublitz (KW)

Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Efstathios Gregorios Stamatiades (EG)

Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Roman David Bülow (RD)

Institute of Pathology & Department of Nephrology, University Clinic of RWTH Aachen, Aachen, Germany.

Peter Boor (P)

Institute of Pathology & Department of Nephrology, University Clinic of RWTH Aachen, Aachen, Germany.

Katja Kotsch (K)

Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH